
PRODUCT DOCUMENTATION

Pivotal™ Greenplum
Database®

Version 4.3

Utility Guide
Rev: A31

© 2017 Pivotal Software, Inc.

Copyright Utility Guide

2

Notice

Copyright

Privacy Policy | Terms of Use

Copyright © 2017 Pivotal Software, Inc. All rights reserved.

Pivotal Software, Inc. believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice. THE INFORMATION IN THIS PUBLICATION IS PROVIDED
"AS IS." PIVOTAL SOFTWARE, INC. ("Pivotal") MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any Pivotal software described in this publication requires an applicable
software license.

All trademarks used herein are the property of Pivotal or their respective owners.

Revised August 2017 (4.3.16.1)

https://pivotal.io/privacy-policy
https://pivotal.io/terms-of-use

Contents Utility Guide

3

Contents

Chapter 1: Preface...5
About This Guide.. 6
About the Greenplum Database Documentation Set..7
Document Conventions... 8

Command Syntax Conventions.. 8
Getting Support... 9

Product information and Technical Support... 9

Chapter 2: Management Utility Reference.. 10
Backend Server Programs.. 12
analyzedb...14
gpactivatestandby.. 18
gpaddmirrors..20
gpbitmapreindex.. 24
gpcheck..26
gpcheckcat...28
gpcheckperf... 31
gpconfig... 34
gpcrondump... 37
gpdbrestore..51
gpdeletesystem..58
gpexpand... 60
gpfdist.. 64
gpfilespace...68
gpinitstandby..71
gpinitsystem... 74
gpload.. 81
gplogfilter... 92
gpmapreduce... 95
gpmfr..97
gpmigrator..101
gpmigrator_mirror.. 103
gpperfmon_install...105
gppkg... 110
gprecoverseg... 112
gpreload... 117
gpscp... 119
gpseginstall.. 121
gpssh... 123
gpssh-exkeys... 126
gpstart.. 129
gpstate... 131
gpstop.. 135
gpsys1..138
gptransfer...139
pgbouncer.. 151

PgBouncer Configuration File...152
Example Configuration Files...161

Contents Utility Guide

4

PgBouncer Authentication File Format...162
PgBouncer Administration Console Commands.. 162

Chapter 3: Client Utility Reference.. 171
Client Utility Summary...172
clusterdb.. 175
createdb... 177
createlang.. 179
createuser.. 181
dropdb..184
droplang... 186
dropuser...188
pg_config... 190
pg_dump.. 192
pg_dumpall.. 198
pg_restore..202
psql.. 206
reindexdb... 224
vacuumdb.. 226

Chapter 4: Oracle Compatibility Functions...228
Installing Oracle Compatibility Functions.. 229
Oracle and Greenplum Implementation Differences... 230
Oracle Compatibility Functions Reference..231
add_months... 232
bitand... 233
concat.. 234
cosh... 235
decode... 236
dump.. 239
instr.. 240
last_day..242
listagg...243
listagg (2)...244
lnnvl..245
months_between..246
nanvl.. 247
next_day.. 248
next_day (2)...249
nlssort.. 250
nvl.. 251
nvl2.. 252
oracle.substr.. 253
reverse... 254
round..255
sinh.. 257
tanh.. 258
trunc... 259

5

Chapter 1

Preface

This guide provides information for system administrators and database superusers responsible for
administering a Greenplum Database system.

• About This Guide

• Document Conventions

• Getting Support

Preface Utility Guide

6

About This Guide
This guide contains reference documentation for command-line utilities and client programs. This guide
is intended for system and database administrators responsible for managing a Greenplum Database
system.

This guide assumes knowledge of Linux/UNIX system administration, database management systems,
database administration, and structured query language (SQL).

Because Greenplum Database is based on PostgreSQL 8.2.15, this guide assumes some familiarity with
PostgreSQL. Links and cross-references to PostgreSQL documentation are provided throughout this guide
for features that are similar to those in Greenplum Database.

https://www.postgresql.org/docs/8.2/static/index.html

Preface Utility Guide

7

About the Greenplum Database Documentation Set
The Greenplum Database 4.3 server documentation set consists of the following guides.

Table 1: Greenplum Database server documentation set

Guide Name Description

Greenplum Database Administrator Guide Information for administering the Greenplum
Database system and managing databases.
It covers topics such as Greenplum Database
architecture and concepts and everyday system
administration tasks such as configuring the
server, monitoring system activity, enabling
high-availability, backing up and restoring
databases, and expanding the system. Database
administration topics include configuring access
control, creating databases and database
objects, loading data into databases, writing
queries, managing workloads, and monitoring and
troubleshooting performance.

Greenplum Database Reference Guide Reference information for Greenplum Database
systems: SQL commands, system catalogs,
environment variables, character set support,
datatypes, the Greenplum MapReduce
specification, postGIS extension, server
parameters, the gp_toolkit administrative schema,
and SQL 2008 support.

Greenplum Database Utility Guide Reference information for command-line utilities,
client programs, and Oracle compatibility functions.

Greenplum Database Installation Guide Information and instructions for installing and
initializing a Greenplum Database system.

Preface Utility Guide

8

Document Conventions
The following conventions are used throughout the Greenplum Database documentation to help you
identify certain types of information.

• Command Syntax Conventions

Command Syntax Conventions

Table 2: Command Syntax Conventions

Text Convention Usage Examples

{ } Within command syntax, curly
braces group related command
options. Do not type the curly
braces.

FROM { 'filename' | STDIN }

[] Within command syntax, square
brackets denote optional
arguments. Do not type the
brackets.

TRUNCATE [TABLE] name

... Within command syntax, an
ellipsis denotes repetition of a
command, variable, or option. Do
not type the ellipsis.

DROP TABLE name [, ...]

| Within command syntax, the
pipe symbol denotes an "OR"
relationship. Do not type the pipe
symbol.

VACUUM [FULL | FREEZE]

$ system_command

root_system_command

=> gpdb_command

=# su_gpdb_command

Denotes a command prompt -
do not type the prompt symbol. $
and # denote terminal command
prompts. => and =# denote
Greenplum Database interactive
program command prompts (psql
or gpssh, for example).

$ createdb mydatabase

chown gpadmin -R /datadir

=> SELECT * FROM mytable;

=# SELECT * FROM pg_
database;

Preface Utility Guide

9

Getting Support
Pivotal/Greenplum support, product, and licensing information can be obtained as follows.

Product information and Technical Support
For technical support, documentation, release notes, software updates, or for information about Pivotal
products, licensing, and services, go to pivotal.io.

https://pivotal.io/

Management Utility Reference Utility Guide

10

Chapter 2

Management Utility Reference

This reference describes the command-line management utilities provided with Greenplum Database.
Greenplum Database uses the standard PostgreSQL client and server programs and provides additional
management utilities for administering a distributed Greenplum Database DBMS. Greenplum Database
management utilities reside in $GPHOME/bin.

Note: When referencing IPv6 addresses in gpfdist URLs or when using numeric IP addresses
instead of hostnames in any management utility, always enclose the IP address in brackets. For
command prompt use, the best practice is to escape any brackets or put them inside quotation
marks. For example, use either:

gpdbrestore -R \[2620:0:170:610::11\]
gpdbrestore -R '[2620:0:170:610::11]'

The following are the Greenplum Database management utilities.

analyzedb

gpactivatestandby

gpaddmirrors

gpbitmapreindex

gpcheck

gpcheckcat

gpchecknet (deprecated)

gpcheckos (deprecated)

gpcheckperf

gpconfig

gpcrondump

gpdbrestore

gpdeletesystem

gpdetective (deprecated)

gp_dump (deprecated)

gpexpand

gpfdist

gpfilespace

gpinitstandby

gpinitsystem

gpload

gplogfilter

gpmfr

gpmigrator (deprecated)

gpmigrator_mirror (deprecated)

gpperfmon_install

gppkg

gprebuildsystem (deprecated)

gprecoverseg

gpreload

gp_restore (deprecated)

gpsizecalc (deprecated)

gpscp

gpskew (deprecated)

gpseginstall

gpssh

gpssh-exkeys

gpstart

gpstate

gpstop

gpsys1

gptransfer

pgbouncer

Management Utility Reference Utility Guide

11

gpmapreduce

Management Utility Reference Utility Guide

12

Backend Server Programs
The following standard PostgreSQL server management programs are provided with Greenplum Database
and reside in $GPHOME/bin. They are modified to handle the parallelism and distribution of a Greenplum
Database system. You access these programs only through the Greenplum Database management tools
and utilities.

Table 3: Greenplum Database Backend Server Programs

Program Name Description Use Instead

initdb This program is called by
gpinitsystem when initializing
a Greenplum Database array. It
is used internally to create the
individual segment instances and
the master instance.

gpinitsystem

ipcclean Not used in Greenplum Database N/A

gpsyncmaster This is the Greenplum program
that starts the gpsyncagent
process on the standby master
host. Administrators do not call
this program directly, but do
so through the management
scripts that initialize and/or
activate a standby master for a
Greenplum Database system.
This process is responsible for
keeping the standby master up
to date with the primary master
via a transaction log replication
process.

gpinitstandby,
gpactivatestandby

pg_controldata Not used in Greenplum Database gpstate

pg_ctl This program is called by
gpstart and gpstop when
starting or stopping a Greenplum
Database array. It is used
internally to stop and start the
individual segment instances and
the master instance in parallel
and with the correct options.

gpstart, gpstop

pg_resetxlog DO NOT USE

Warning: This program might
cause data loss or cause data
to become unavailable. If this
program is used, the Pivotal
Greenplum Database cluster is
not supported. The cluster must
be reinitialized and restored by
the customer.

N/A

Management Utility Reference Utility Guide

13

Program Name Description Use Instead

postgres The postgres executable is
the actual PostgreSQL server
process that processes queries.

The main postgres process
(postmaster) creates other
postgres subprocesses and
postgres session as needed to
handle client connections.

postmaster postmaster starts the postgres
database server listener process
that accepts client connections.
In Greenplum Database, a
postgres database listener
process runs on the Greenplum
master Instance and on each
Segment Instance.

In Greenplum Database, you
use gpstart and gpstop to
start all postmasters (postgres
processes) in the system at once
in the correct order and with the
correct options.

Management Utility Reference Utility Guide

14

analyzedb
A utility that performs ANALYZE operations on tables incrementally and concurrently. For append optimized
tables, analyzedb updates statistics only if the statistics are not current.

Synopsis
analyzedb -d dbname
 { -s schema |
 { -t schema.table
 [-i col1[, col2, ...] |
 -x col1[, col2, ...]] } |
 { -f | --file} config-file }
 [-l | --list]
 [-p parallel-level]
 [--full]
 [--skip_root_stats]
 [-v | --verbose]
 [--debug]
 [-a]

analyzedb { --clean_last | --clean_all }
analyzedb --version
analyzedb { -? | -h | --help }

Description
The analyzedb utility updates statistics on table data for the specified tables in a Greenplum database
incrementally and concurrently.

While performing ANALYZE operations, analyzedb creates a snapshot of the table metadata and stores
it on disk on the master host. An ANALYZE operation is performed only if the table has been modified. If a
table or partition has not been modified since the last time it was analyzed, analyzedb automatically skips
the table or partition because it already contains up-to-date statistics.

• For append optimized tables, analyzedb updates statistics incrementally, if the statistics are not
current. For example, if table data is changed after statistics were collected for the table. If there are no
statistics for the table, statistics are collected.

• For heap tables, statistics are always updated.

Specify the --full option to update append-optimized table statistics even if the table statistics are
current.

By default, analyzedb creates a maximum of 5 concurrent sessions to analyze tables in parallel. For each
session, analyzedb issues an ANALYZE command to the database and specifies different table names. The
-p option controls the maximum number of concurrent sessions.

Partitioned Append-Optimized Tables

For a partitioned, append-optimized table, analyzedb checks the partitioned table root partition and leaf
partitions. If needed, the utility updates statistics for non-current partitions and the root partition.

The root partition statistics is required by GPORCA. By default, the analyzedb utility collects statistics
on the root partition of a partitioned table if the statistics do not exist. If any of the leaf partitions have
stale statistics, analyzedb also refreshes the root partition statistics. The cost of refreshing the root level
statistics is comparable to analyzing one leaf partition. You can specify the option --skip_root_stats to
disable collection of statistics on the root partition of a partitioned table.

Management Utility Reference Utility Guide

15

Notes
The analyzedb utility updates append optimized table statistics if the table has been modified by DML or
DDL commands, including INSERT, DELETE, UPDATE, CREATE TABLE, ALTER TABLE and TRUNCATE. The
utility determines if a table has been modified by comparing catalog metadata of tables with the snapshot
of metadata taken during a previous analyzedb operation. The snapshots of table metadata are stored as
state files in the directory db_analyze in the Greenplum Database master data directory. You can specify
the --clean_last or --clean_all option to remove state files generated by analyzedb.

If you do not specify a table, set of tables, or schema, the analyzedb utility collects the statistics as needed
on all system catalog tables and user-defined tables in the database.

External tables are not affected by analyzedb.

Table names that contain spaces are not supported.

Running the ANALYZE command on a table, not using the analyzedb utility, does not update the table
metadata that the analyzedb utility uses to determine whether table statistics are up to date.

Options
--clean_last

Remove the state files generated by last analyzedb operation. All other options except -d
are ignored.

--clean_all

Remove all the state files generated by analyzedb. All other options except -d are ignored.

-d dbname

Specifies the name of the database that contains the tables to be analyzed. If this option
is not specified, the database name is read from the environment variable PGDATABASE. If
PGDATABASE is not set, the user name specified for the connection is used.

--debug

If specified, sets the logging level to debug. During command execution, debug level
information is written to the log file and to the command line. The information includes the
commands executed by the utility and the duration of each ANALYZE operation.

-f config-file | --file config-file

Text file that contains a list of tables to be analyzed. A relative file path from current directory
can be specified.

The file lists one table per line. Table names must be qualified with a schema name.
Optionally, a list of columns can be specified using the -i or -x. No other options are allowed
in the file. Other options such as --full must be specified on the command line.

Only one of the options can be used to specify the files to be analyzed: -f or --file, -t , or
-s.

When performing ANALYZE operations on multiple tables, analyzedb creates concurrent
sessions to analyze tables in parallel. The -p option controls the maximum number of
concurrent sessions.

In the following example, the first line performs an ANALYZE operation on the table
public.nation, the second line performs an ANALYZE operation only on the columns
l_shipdate and l_receiptdate in the table public.lineitem.

public.nation
public.lineitem -i l_shipdate, l_receiptdate

--full

Perform an ANALYZE operation on all the specified tables. The operation is performed even if
the statistics are up to date.

Management Utility Reference Utility Guide

16

-i col1, col2, ...

Optional. Must be specified with the -t option. For the table specified with the -t option,
collect statistics only for the specified columns.

Only -i, or -x can be specified. Both options cannot be specified.

-l | --list

Lists the tables that would have been analyzed with the specified options. The ANALYZE
operations are not performed.

-p parallel-level

The number of tables that are analyzed in parallel. parallel level can be an integer between 1
and 10, inclusive. Default value is 5.

--skip_root_stats

Skip refreshing root partition statistics if any of the leaf partitions that are also analyzed
require updating.

Do not specify this option if you use GPORCA to execute queries against partitioned tables.

-s schema

Specify a schema to analyze. All tables in the schema will be analyzed. Only a single schema
name can be specified on the command line.

Only one of the options can be used to specify the files to be analyzed: -f or --file, -t , or
-s.

-t schema.table

Collect statistics only on schema.table. The table name must be qualified with a schema
name. Only a single table name can be specified on the command line. You can specify
the -f option to specify multiple tables in a file or the -s option to specify all the tables in a
schema.

Only one of these options can be used to specify the files to be analyzed: -f or --file, -t ,
or -s.

-x col1, col2, ...

Optional. Must be specified with the -t option. For the table specified with the -t option,
exclude statistics collection for the specified columns. Statistics are collected only on the
columns that are not listed.

Only -i, or -x can be specified. Both options cannot be specified.

-a

Quiet mode. Do not prompt for user confirmation.

-h | -? | --help

Displays the online help.

-v | --verbose

If specified, sets the logging level to verbose to write additional information the log file and to
the command line during command execution. The information includes a list of all the tables
to be analyzed (including child leaf partitions of partitioned tables). Output also includes the
duration of each ANALYZE operation.

--version

Displays the version of this utility.

Management Utility Reference Utility Guide

17

Examples
An example that collects statistics only on a set of table columns. In the database mytest, collect statistics
on the columns shipdate and receiptdate in the table public.orders:

analyzedb -d mytest -t public.orders -i shipdate, receiptdate

An example that collects statistics on a table and exclude a set of columns. In the database mytest, collect
statistics on the table public.foo, and do not collect statistics on the columns bar and test2.

analyzedb -d mytest -t public.foo -x bar, test2

An example that specifies a file that contains a list of tables. This command collect statistics on the tables
listed in the file analyze-tables in the database named mytest.

analyzedb -d mytest -f analyze-tables

If you do not specify a table, set of tables, or schema, the analyzedb utility collects the statistics as needed
on all catalog tables and user-defined tables in the specified database. This command refreshes table
statistics on the system catalog tables and user-defined tables in the database mytest.

analyzedb -d mytest

You can create a PL/Python function to run the analyzedb utility as a Greenplum Database function. This
example CREATE FUNCTION command creates a user defined PL/Python function that runs the analyzedb
utility and displays output on the command line. Specify analyzedb options as the function parameter.

CREATE OR REPLACE FUNCTION analyzedb(params TEXT)
 RETURNS VOID AS
$BODY$
 import subprocess
 cmd = ['analyzedb', '-a'] + params.split()
 p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

 # verbose output of process
 for line in iter(p.stdout.readline, ''):
 plpy.info(line);

 p.wait()
$BODY$
LANGUAGE plpythonu VOLATILE;

When this SELECT command is run by the gpadmin user, the analyzedb utility performs an analyze
operation on the table public.mytable that is in the database mytest.

SELECT analyzedb('-d mytest -t public.mytable') ;

Note: To create a PL/Python function, the PL/Python procedural language must be registered as a
language in the database. For example, this CREATE LANGUAGE command run as gpadmin registers
PL/Python as an untrusted language:

CREATE LANGUAGE plpythonu;

See Also
ANALYZE in the Greenplum Database Reference Guide

Management Utility Reference Utility Guide

18

gpactivatestandby
Activates a standby master host and makes it the active master for the Greenplum Database system.

Synopsis
gpactivatestandby -d standby_master_datadir [-f] [-a] [-q]
 [-l logfile_directory]

gpactivatestandby -v

gpactivatestandby -? | -h | --help

Description
The gpactivatestandby utility activates a backup, standby master host and brings it into operation as
the active master instance for a Greenplum Database system. The activated standby master effectively
becomes the Greenplum Database master, accepting client connections on the master port.

When you initialize a standby master, the default is to use the same port as the active master. For
information about the master port for the standby master, see gpinitstandby.

You must run this utility from the master host you are activating, not the failed master host you are
disabling. Running this utility assumes you have a standby master host configured for the system (see
gpinitstandby).

The utility will perform the following steps:

• Stops the synchronization process (walreceiver) on the standby master

• Updates the system catalog tables of the standby master using the logs

• Activates the standby master to be the new active master for the system

• Restarts the Greenplum Database system with the new master host

A backup, standby Greenplum master host serves as a 'warm standby' in the event of the primary
Greenplum master host becoming non-operational. The standby master is kept up to date by transaction
log replication processes (the walsender and walreceiver), which run on the primary master and standby
master hosts and keep the data between the primary and standby master hosts synchronized.

If the primary master fails, the log replication process is shutdown, and the standby master can be
activated in its place by using the gpactivatestandby utility. Upon activation of the standby master,
the replicated logs are used to reconstruct the state of the Greenplum master host at the time of the last
successfully committed transaction.

In order to use gpactivatestandby to activate a new primary master host, the master host that was
previously serving as the primary master cannot be running. The utility checks for a postmaster.pid file
in the data directory of the disabled master host, and if it finds it there, it will assume the old master host
is still active. In some cases, you may need to remove the postmaster.pid file from the disabled master
host data directory before running gpactivatestandby (for example, if the disabled master host process
was terminated unexpectedly).

After activating a standby master, run ANALYZE to update the database query statistics. For example:

psql dbname -c 'ANALYZE;'

After you activate the standby master as the primary master, the Greenplum Database system no longer
has a standby master configured. You might want to specify another host to be the new standby with the
gpinitstandby utility.

Management Utility Reference Utility Guide

19

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-d standby_master_datadir

The absolute path of the data directory for the master host you are activating.

If this option is not specified, gpactivatestandby uses the value specified by the
environment variable MASTER_DATA_DIRECTORY of the master host you are activating.

If a directory cannot be determined, the utility returns an error.

-f (force activation)

Use this option to force activation of the backup master host. Use this option only if you are
sure that the standby and primary master hosts are consistent.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

-v (show utility version)

Displays the version, status, last updated date, and check sum of this utility.

-? | -h | --help (help)

Displays the online help.

Example
Activate the standby master host and make it the active master instance for a Greenplum Database system
(run from backup master host you are activating):

gpactivatestandby -d /gpdata

See Also
gpinitsystem, gpinitstandby

Management Utility Reference Utility Guide

20

gpaddmirrors
Adds mirror segments to a Greenplum Database system that was initially configured without mirroring.

Synopsis
gpaddmirrors [-p port_offset] [-m datadir_config_file [-a]] [-s]
 [-d master_data_directory] [-B parallel_processes] [-l logfile_directory]
 [-v]

gpaddmirrors -i mirror_config_file [-s] [-a] [-d master_data_directory]
 [-B parallel_processes] [-l logfile_directory] [-v]

gpaddmirrors -o output_sample_mirror_config [-m datadir_config_file]

gpaddmirrors -?

gpaddmirrors --version

Description
The gpaddmirrors utility configures mirror segment instances for an existing Greenplum Database system
that was initially configured with primary segment instances only. The utility will create the mirror instances
and begin the online replication process between the primary and mirror segment instances. Once all
mirrors are synchronized with their primaries, your Greenplum Database system is fully data redundant.

Important: During the online replication process, Greenplum Database should be in a quiescent
state, workloads and other queries should not be running.

By default, the utility will prompt you for the file system location(s) where it will create the mirror segment
data directories. If you do not want to be prompted, you can pass in a file containing the file system
locations using the -m option.

The mirror locations and ports must be different than your primary segment data locations and ports. If
you have created additional filespaces, you will also be prompted for mirror locations for each of your
filespaces.

The utility creates a unique data directory for each mirror segment instance in the specified location using
the predefined naming convention. There must be the same number of file system locations declared for
mirror segment instances as for primary segment instances. It is OK to specify the same directory name
multiple times if you want your mirror data directories created in the same location, or you can enter a
different data location for each mirror. Enter the absolute path. For example:

Enter mirror segment data directory location 1 of 2 > /gpdb/mirror
Enter mirror segment data directory location 2 of 2 > /gpdb/mirror

OR

Enter mirror segment data directory location 1 of 2 > /gpdb/m1
Enter mirror segment data directory location 2 of 2 > /gpdb/m2

Alternatively, you can run the gpaddmirrors utility and supply a detailed configuration file using the -i
option. This is useful if you want your mirror segments on a completely different set of hosts than your
primary segments. The format of the mirror configuration file is:

filespaceOrder=[filespace1_fsname[:filespace2_fsname:...]
mirror[content]=content:address:port:mir_replication_port:pri_replication_
port:fselocation[:fselocation:...]

Management Utility Reference Utility Guide

21

For example (if you do not have additional filespaces configured besides the default pg_system filespace):

filespaceOrder=
mirror0=0:sdw1-1:60000:61000:62000:/gpdata/mir1/gp0
mirror1=1:sdw1-1:60001:61001:62001:/gpdata/mir2/gp1

The gp_segment_configuration, pg_filespace, and pg_filespace_entry system catalog tables can
help you determine your current primary segment configuration so that you can plan your mirror segment
configuration. For example, run the following query:

=# SELECT dbid, content, address as host_address, port,
 replication_port, fselocation as datadir
 FROM gp_segment_configuration, pg_filespace_entry
 WHERE dbid=fsedbid
 ORDER BY dbid;

If creating your mirrors on alternate mirror hosts, the new mirror segment hosts must be pre-installed with
the Greenplum Database software and configured exactly the same as the existing primary segment hosts.

You must make sure that the user who runs gpaddmirrors (the gpadmin user) has permissions to write to
the data directory locations specified. You may want to create these directories on the segment hosts and
chown them to the appropriate user before running gpaddmirrors.

Options
-a (do not prompt)

Run in quiet mode - do not prompt for information. Must supply a configuration file with either
-m or -i if this option is used.

-B parallel_processes

The number of mirror setup processes to start in parallel. If not specified, the utility will start
up to 10 parallel processes depending on how many mirror segment instances it needs to set
up.

-d master_data_directory

The master data directory. If not specified, the value set for $MASTER_DATA_DIRECTORY will be
used.

-i mirror_config_file

A configuration file containing one line for each mirror segment you want to create. You must
have one mirror segment listed for each primary segment in the system. The format of this
file is as follows (as per attributes in the gp_segment_configuration, pg_filespace, and
pg_filespace_entry catalog tables):

filespaceOrder=[filespace1_fsname[:filespace2_fsname:...]
mirror[content]=content:address:port:mir_replication_port:pri_replication_
port:fselocation[:fselocation:...]

Note that you only need to specify a name for filespaceOrder if your system has multiple
filespaces configured. If your system does not have additional filespaces configured
besides the default pg_system filespace, this file will only have one location (for the
default data directory filespace, pg_system). pg_system does not need to be listed in the
filespaceOrder line. It will always be the first fselocation listed after replication_port.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m datadir_config_file

Management Utility Reference Utility Guide

22

A configuration file containing a list of file system locations where the mirror data directories
will be created. If not supplied, the utility prompts you for locations. Each line in the file
specifies a mirror data directory location. For example:

/gpdata/m1
/gpdata/m2
/gpdata/m3
/gpdata/m4

If your system has additional filespaces configured in addition to the default pg_system
filespace, you must also list file system locations for each filespace as follows:

filespace filespace1
/gpfs1/m1
/gpfs1/m2
/gpfs1/m3
/gpfs1/m4

-o output_sample_mirror_config

If you are not sure how to lay out the mirror configuration file used by the -i option, you can
run gpaddmirrors with this option to generate a sample mirror configuration file based on
your primary segment configuration. The utility will prompt you for your mirror segment data
directory locations (unless you provide these in a file using -m). You can then edit this file to
change the host names to alternate mirror hosts if necessary.

-p port_offset

Optional. This number is used to calculate the database ports and replication ports used
for mirror segments. The default offset is 1000. Mirror port assignments are calculated as
follows:

primary port + offset = mirror database port

primary port + (2 * offset) = mirror replication port

primary port + (3 * offset) = primary replication port

For example, if a primary segment has port 50001, then its mirror will use a database port of
51001, a mirror replication port of 52001, and a primary replication port of 53001 by default.

-s (spread mirrors)

Spreads the mirror segments across the available hosts. The default is to group a set
of mirror segments together on an alternate host from their primary segment set. Mirror
spreading will place each mirror on a different host within the Greenplum Database array.
Spreading is only allowed if there is a sufficient number of hosts in the array (number of hosts
is greater than the number of segment instances per host).

-v (verbose)

Sets logging output to verbose.

--version (show utility version)

Displays the version of this utility.

-? (help)

Displays the online help.

Examples
Add mirroring to an existing Greenplum Database system using the same set of hosts as your primary
data. Calculate the mirror database and replication ports by adding 100 to the current primary segment port
numbers:

$ gpaddmirrors -p 100

Management Utility Reference Utility Guide

23

Add mirroring to an existing Greenplum Database system using a different set of hosts from your primary
data:

$ gpaddmirrors -i mirror_config_file

Where mirror_config_file looks something like this (if you do not have additional filespaces configured
besides the default pg_system filespace):

filespaceOrder=
mirror0=0:sdw1-1:52001:53001:54001:/gpdata/mir1/gp0
mirror1=1:sdw1-2:52002:53002:54002:/gpdata/mir2/gp1
mirror2=2:sdw2-1:52001:53001:54001:/gpdata/mir1/gp2
mirror3=3:sdw2-2:52002:53002:54002:/gpdata/mir2/gp3

Output a sample mirror configuration file to use with gpaddmirrors -i:

$ gpaddmirrors -o /home/gpadmin/sample_mirror_config

See Also
gpinitsystem, gpinitstandby, gpactivatestandby

Management Utility Reference Utility Guide

24

gpbitmapreindex
Rebuilds bitmap indexes after a 3.3.x to 4.0.x upgrade.

Synopsis
gpbitmapreindex -m { r | d | {l [-o output_sql_file]} }
 [-h master_host] [-p master_port] [-n number_of_processes] [-v]

gpmigrator --version

gpmigrator --help | -?

Description
The on-disk format of bitmap indexes has changed from release 3.3.x to 4.0.x. Users who upgrade
must rebuild all bitmap indexes after upgrading to 4.0. The gpbitmapreindex utility facilitates the
upgrade of bitmap indexes by either running the REINDEX command to reindex them, or running the
DROP INDEX command to simply remove them. If you decide to drop your bitmap indexes rather than
reindex, run gpbitmapreindex in list --outfile mode first to output a SQL file that you can use to
recreate the indexes later. You must be the Greenplum Database superuser (gpadmin) in order to run
gpbitmapreindex.

Options
-h host | --hosthost

Specifies the host name of the machine on which the Greenplum master database server
is running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-m {r|d|l} | --mode {reindex|drop|list}

Required. The bitmap index upgrade mode: either reindex, drop, or list all bitmap indexes
in the system.

-n number_of_processes | --parallel number_of_processes

The number of bitmap indexes to reindex or drop in parallel. Valid values are 1-16. The
default is 1.

-o output_sql_file | --outfile output_sql_file

When used with list mode, outputs a SQL file that can be used to recreate the bitmap
indexes.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to 5432.

-v | --verbose

Show verbose output.

--version

Displays the version of this utility.

-? | --help

Displays the online help.

Management Utility Reference Utility Guide

25

Examples
Reindex all bitmap indexes:

gpbitmapreindex -m r

Output a file of SQL commands that can be used to recreate all bitmap indexes:

gpbitmapreindex -m list --outfile /home/gpadmin/bmp_ix.sql

Drop all bitmap indexes and run in verbose mode:

gpbitmapreindex -m d -v

See Also
Greenplum Database Reference Guide: REINDEX, DROP INDEX, CREATE INDEX

Management Utility Reference Utility Guide

26

gpcheck
Verifies and validates Greenplum Database platform settings.

Synopsis
gpcheck {{-f | --file} hostfile_gpcheck | {-h | --host} host_ID| --local }
 [-m master_host] [-s standby_master_host] [--stdout | --zipout]
 [--config config_file]

gpcheck --zipin gpcheck_zipfile

gpcheck -?

gpcheck --version

Description
The gpcheck utility determines the platform on which you are running Greenplum Database and validates
various platform-specific configuration settings. gpcheck can use a host file or a file previously created
with the --zipout option to validate platform settings. At the end of a successful validation process,
GPCHECK_NORMAL message displays. If GPCHECK_ERROR displays, one or more validation checks failed. You
can use also gpcheck to gather and view platform settings on hosts without running validation checks.

You should run gpcheck as root. If you do not run gpcheck as root, the utility displays a warning
message and will not be able to validate all configuration settings; Only some of these settings will be
validated.

Options
--config config_file

The name of a configuration file to use instead of the default file $GPHOME/etc/gpcheck.cnf
(or ~/gpconfigs/gpcheck_dca_config on the Dell EMC Greenplum Data Computing
Appliance). This file specifies the OS-specific checks to run.

{-f | --file} hostfile_gpcheck

The name of a file that contains a list of hosts that gpcheck uses to validate platform-specific
settings. This file should contain a single host name for all hosts in your Greenplum Database
system (master, standby master, and segments). gpcheck uses SSH to connect to the hosts.

{--h | --host} host_ID

Checks platform-specific settings on the host in your Greenplum Database system specified
by host_ID. gpcheck uses SSH to connect to the host.

--local

Checks platform-specific settings on the segment host where gpcheck is run. This option
does not require SSH authentication.

-m master_host

This option is deprecated and will be removed in a future release.

-s standby_master_host

This option is deprecated and will be removed in a future release.

--stdout

Display collected host information from gpcheck. No checks or validations are performed.

--zipout

Management Utility Reference Utility Guide

27

Save all collected data to a .zip file in the current working directory. gpcheck automatically
creates the .zip file and names it gpcheck_timestamp.tar.gz. No checks or validations are
performed.

--zipin gpcheck_zipfile

Use this option to decompress and check a .zip file created with the --zipout option.
gpcheck performs validation tasks against the file you specify in this option.

-? (help)

Displays the online help.

--version

Displays the version of this utility.

Examples
Verify and validate the Greenplum Database platform settings by entering a host file:

gpcheck -f hostfile_gpcheck

Save Greenplum Database platform settings to a zip file:

gpcheck -f hostfile_gpcheck --zipout

Verify and validate the Greenplum Database platform settings using a zip file created with the --zipout
option:

gpcheck --zipin gpcheck_timestamp.tar.gz

View collected Greenplum Database platform settings:

gpcheck -f hostfile_gpcheck --stdout

See Also
gpssh, gpscp, gpcheckperf

Management Utility Reference Utility Guide

28

gpcheckcat
The gpcheckcat utility tests Greenplum Database catalog tables for inconsistencies.

The utility is in $GPHOME/bin/lib.

Synopsis
gpcheckcat [options] [dbname]

 Options:
 -g dir
 -p port
 -P password
 -U user_name
 -S {none | only}
 -O
 -R test_name
 -C catalog_name
 -B parallel_processes
 -v
 -A

gpcheckcat -l

gpcheckcat -?

Description
The gpcheckcat utility runs multiple tests that check for database catalog inconsistencies. Some of
the tests cannot be run concurrently with other workload statements or the results will not be usable.
Restart the database in restricted mode when running gpcheckcat, otherwise gpcheckcat might report
inconsistencies due to ongoing database operations rather than the actual number of inconsistencies. If
you run gpcheckcat without stopping database activity, run it with -O option.

Note: Any time you run the utility, it checks for and deletes orphaned, temporary database
schemas (temporary schemas without a session ID) in the specified databases. The utility displays
the results of the orphaned, temporary schema check on the command line and also logs the
results.

Catalog inconsistencies are inconsistencies that occur between Greenplum Database system tables. In
general, there are three types of inconsistencies:

• Inconsistencies in system tables at the segment level. For example, an inconsistency between a system
table that contains table data and a system table that contains column data. As another, a system table
that contains duplicates in a column that should to be unique.

• Inconsistencies between same system table across segments. For example, a system table is missing
row on one segment, but other segments have this row. As another example, the values of specific row
column data are different across segments, such as table owner or table access privileges.

• Persistent Table inconsistencies are inconsistencies in persistence object state and file system objects
on a segment. For example, there are no running transactions, all transactions are complete, but there
is object that is marked as creation incomplete in persistent tables. As another example, a file exists
in database directory, but there is no corresponding object existing in the database system tables.

Options
-A

Run gpcheckcat on all databases in the Greenplum Database installation.

Management Utility Reference Utility Guide

29

-B parallel_processes

The number of processes to run in parallel.

The gpcheckcat utility attempts to determine the number of simultaneous processes (the
batch size) to use. The utility assumes it can use a buffer with a minimum of 20MB for each
process. The maximum number of parallel processes is the number of Greenplum Database
segment instances. The utility displays the number of parallel processes that it uses when it
starts checking the catalog.

Note: The utility might run out of memory if the number of errors returned
exceeds the buffer size. If an out of memory error occurs, you can lower the
batch size with the -B option. For example, if the utility displays a batch size of
936 and runs out of memory, you can specify -B 468 to run 468 processes in
parallel.

-C catalog_table

Run cross consistency, foreign key, and ACL tests for the specified catalog table.

-g data_directory

Generate SQL scripts to fix catalog inconsistencies. The scripts are placed in data_directory.

-l

List the gpcheckcat tests.

-O

Run only the gpcheckcat tests that can be run in online (not restricted) mode.

-p port

This option specifies the port that is used by the Greenplum Database.

-P password

The password of the user connecting to Greenplum Database.

-R test_name

Specify a test to run. Some tests can be run only when Greenplum Database is in restricted
mode.

These are the tests that can be performed:

acl - Cross consistency check for access control privileges

duplicate - Check for duplicate entries

duplicate_persistent - Check for duplicate gp_persistent_relation_node entries

foreign_key - Check foreign keys

inconsistent - Cross consistency check for master segment inconsistency

mirroring_matching - Checks if mirroring is consistent (either enabled or disabled) for the
cluster and segments.

missing_extraneous - Cross consistency check for missing or extraneous entries

owner - Check table ownership that is inconsistent with the master database

part_integrity - Check pg_partition branch integrity, partition with OIDs, partition
distribution policy

part_constraint - Check constraints on partitioned tables

unique_index_violation - Check tables that have columns with the unique index constraint
for duplicate entries

dependency - Check for dependency on non-existent objects (restricted mode only)

Management Utility Reference Utility Guide

30

distribution_policy - Check constraints on randomly distributed tables (restricted mode
only)

namespace - Check for schemas with a missing schema definition (restricted mode only)

persistent - Check persistent tables (restricted mode only)

pgclass - Check pg_class entry that does not have any corresponding pg_attribute entry
(restricted mode only)

-S {none | only}

Specify this option to control the testing of catalog tables that are shared across all databases
in the Greenplum Database installation, such as pg_database.

The value none disables testing of shared catalog tables. The value only tests only the
shared catalog tables.

-U user_name

The user connecting to Greenplum Database.

-? (help)

Displays the online help.

-v (verbose)

Displays detailed information about the tests that are performed.

Notes
The utility identifies tables with missing attributes and displays them in various locations in the output and
in a non-standardized format. The utility also displays a summary list of tables with missing attributes in the
format database.schema.table.segment_id after the output information is displayed.

If gpcheckcat detects inconsistent OID (Object ID) information, it generates one or more verification files
that contain an SQL query. You can run the SQL query to see details about the OID inconsistencies and
investigate the inconsistencies. The files are generated in the directory where gpcheckcat is invoked.

This is the format of the file:

gpcheckcat.verify.dbname.catalog_table_name.test_name.TIMESTAMP.sql

This is an example verification filename created by gpcheckcat when it detects inconsistent OID (Object
ID) information in the catalog table pg_type in the database mydb:

gpcheckcat.verify.mydb.pg_type.missing_extraneous.20150420102715.sql

This is an example query from a verification file:

SELECT *
 FROM (
 SELECT relname, oid FROM pg_class WHERE reltype
 IN (1305822,1301043,1301069,1301095)
 UNION ALL
 SELECT relname, oid FROM gp_dist_random('pg_class') WHERE reltype
 IN (1305822,1301043,1301069,1301095)
) alltyprelids
 GROUP BY relname, oid ORDER BY count(*) desc ;

Management Utility Reference Utility Guide

31

gpcheckperf
Verifies the baseline hardware performance of the specified hosts.

Synopsis
gpcheckperf -d test_directory [-d test_directory ...]
 {-f hostfile_gpcheckperf | - h hostname [-h hostname ...]}
 [-r ds] [-B block_size] [-S file_size] [-D] [-v|-V]

gpcheckperf -d temp_directory
 {-f hostfile_gpchecknet | - h hostname [-h hostname ...]}
 [-r n|N|M [--duration time] [--netperf]] [-D] [-v | -V]

gpcheckperf -?

gpcheckperf --version

Description
The gpcheckperf utility starts a session on the specified hosts and runs the following performance tests:

• Disk I/O Test (dd test) — To test the sequential throughput performance of a logical disk or file system,
the utility uses the dd command, which is a standard UNIX utility. It times how long it takes to write
and read a large file to and from disk and calculates your disk I/O performance in megabytes (MB)
per second. By default, the file size that is used for the test is calculated at two times the total random
access memory (RAM) on the host. This ensures that the test is truly testing disk I/O and not using the
memory cache.

• Memory Bandwidth Test (stream) — To test memory bandwidth, the utility uses the STREAM
benchmark program to measure sustainable memory bandwidth (in MB/s). This tests that your system
is not limited in performance by the memory bandwidth of the system in relation to the computational
performance of the CPU. In applications where the data set is large (as in Greenplum Database), low
memory bandwidth is a major performance issue. If memory bandwidth is significantly lower than the
theoretical bandwidth of the CPU, then it can cause the CPU to spend significant amounts of time
waiting for data to arrive from system memory.

• Network Performance Test (gpnetbench*) — To test network performance (and thereby the
performance of the Greenplum Database interconnect), the utility runs a network benchmark program
that transfers a 5 second stream of data from the current host to each remote host included in the
test. The data is transferred in parallel to each remote host and the minimum, maximum, average and
median network transfer rates are reported in megabytes (MB) per second. If the summary transfer
rate is slower than expected (less than 100 MB/s), you can run the network test serially using the -r
n option to obtain per-host results. To run a full-matrix bandwidth test, you can specify -r M which will
cause every host to send and receive data from every other host specified. This test is best used to
validate if the switch fabric can tolerate a full-matrix workload.

To specify the hosts to test, use the -f option to specify a file containing a list of host names, or use the -h
option to name single host names on the command-line. If running the network performance test, all entries
in the host file must be for network interfaces within the same subnet. If your segment hosts have multiple
network interfaces configured on different subnets, run the network test once for each subnet.

You must also specify at least one test directory (with -d). The user who runs gpcheckperf must have
write access to the specified test directories on all remote hosts. For the disk I/O test, the test directories
should correspond to your segment data directories (primary and/or mirrors). For the memory bandwidth
and network tests, a temporary directory is required for the test program files.

Before using gpcheckperf, you must have a trusted host setup between the hosts involved in the
performance test. You can use the utility gpssh-exkeys to update the known host files and exchange

Management Utility Reference Utility Guide

32

public keys between hosts if you have not done so already. Note that gpcheckperf calls to gpssh and
gpscp, so these Greenplum utilities must also be in your $PATH.

Options
-B block_size

Specifies the block size (in KB or MB) to use for disk I/O test. The default is 32KB, which is
the same as the Greenplum Database page size. The maximum block size is 1 MB.

-d test_directory

For the disk I/O test, specifies the file system directory locations to test. You must have write
access to the test directory on all hosts involved in the performance test. You can use the -
d option multiple times to specify multiple test directories (for example, to test disk I/O of your
primary and mirror data directories).

-d temp_directory

For the network and stream tests, specifies a single directory where the test program files
will be copied for the duration of the test. You must have write access to this directory on all
hosts involved in the test.

-D (display per-host results)

Reports performance results for each host for the disk I/O tests. The default is to report
results for just the hosts with the minimum and maximum performance, as well as the total
and average performance of all hosts.

--duration time

Specifies the duration of the network test in seconds (s), minutes (m), hours (h), or days (d).
The default is 15 seconds.

-f hostfile_gpcheckperf

For the disk I/O and stream tests, specifies the name of a file that contains one host name
per host that will participate in the performance test. The host name is required, and you can
optionally specify an alternate user name and/or SSH port number per host. The syntax of
the host file is one host per line as follows:

[username@]hostname[:ssh_port]

-f hostfile_gpchecknet

For the network performance test, all entries in the host file must be for host adresses
within the same subnet. If your segment hosts have multiple network interfaces configured
on different subnets, run the network test once for each subnet. For example (a host file
containing segment host address names for interconnect subnet 1):

sdw1-1
sdw2-1
sdw3-1

-h hostname

Specifies a single host name (or host address) that will participate in the performance test.
You can use the -h option multiple times to specify multiple host names.

--netperf

Specifies that the netperf binary should be used to perform the network test instead of
the Greenplum network test. To use this option, you must download netperf from http://
www.netperf.org and install it into $GPHOME/bin/lib on all Greenplum hosts (master and
segments).

-r ds{n|N|M}

Specifies which performance tests to run. The default is dsn:

http://www.netperf.org
http://www.netperf.org

Management Utility Reference Utility Guide

33

• Disk I/O test (d)

• Stream test (s)

• Network performance test in sequential (n), parallel (N), or full-matrix (M) mode. The
optional --duration option specifies how long (in seconds) to run the network test. To
use the parallel (N) mode, you must run the test on an even number of hosts.

If you would rather use netperf (http://www.netperf.org) instead of the Greenplum
network test, you can download it and install it into $GPHOME/bin/lib on all Greenplum
hosts (master and segments). You would then specify the optional --netperf option to
use the netperf binary instead of the default gpnetbench* utilities.

-S file_size

Specifies the total file size to be used for the disk I/O test for all directories specified with
-d. file_size should equal two times total RAM on the host. If not specified, the default is
calculated at two times the total RAM on the host where gpcheckperf is executed. This
ensures that the test is truly testing disk I/O and not using the memory cache. You can
specify sizing in KB, MB, or GB.

-v (verbose) | -V (very verbose)

Verbose mode shows progress and status messages of the performance tests as they are
run. Very verbose mode shows all output messages generated by this utility.

--version

Displays the version of this utility.

-? (help)

Displays the online help.

Examples
Run the disk I/O and memory bandwidth tests on all the hosts in the file host_file using the test directory of
/data1 and /data2:

$ gpcheckperf -f hostfile_gpcheckperf -d /data1 -d /data2 -r ds

Run only the disk I/O test on the hosts named sdw1 and sdw2 using the test directory of /data1. Show
individual host results and run in verbose mode:

$ gpcheckperf -h sdw1 -h sdw2 -d /data1 -r d -D -v

Run the parallel network test using the test directory of /tmp, where hostfile_gpcheck_ic* specifies all
network interface host address names within the same interconnect subnet:

$ gpcheckperf -f hostfile_gpchecknet_ic1 -r N -d /tmp
$ gpcheckperf -f hostfile_gpchecknet_ic2 -r N -d /tmp

Run the same test as above, but use netperf instead of the Greenplum network test (note that netperf
must be installed in $GPHOME/bin/lib on all Greenplum hosts):

$ gpcheckperf -f hostfile_gpchecknet_ic1 -r N --netperf -d /tmp
$ gpcheckperf -f hostfile_gpchecknet_ic2 -r N --netperf -d /tmp

See Also
gpssh, gpscp, gpcheck

http://www.netperf.org

Management Utility Reference Utility Guide

34

gpconfig
Sets server configuration parameters on all segments within a Greenplum Database system.

Synopsis
gpconfig -c param_name -v value [-m master_value | --masteronly]
 | -r param_name [--masteronly | -l
 [--skipvalidation] [--verbose] [--debug]

gpconfig -s param_name [--file] [--verbose] [--debug]

gpconfig --help

Description
The gpconfig utility allows you to set, unset, or view configuration parameters from the postgresql.conf
files of all instances (master, segments, and mirrors) in your Greenplum Database system. When setting
a parameter, you can also specify a different value for the master if necessary. For example, parameters
such as max_connections require a different setting on the master than what is used for the segments. If
you want to set or unset a global or master only parameter, use the --masteronly option.

gpconfig can only be used to manage certain parameters. For example, you cannot use it to set
parameters such as port, which is required to be distinct for every segment instance. Use the -l (list)
option to see a complete list of configuration parameters supported by gpconfig.

When gpconfig sets a configuration parameter in a segment postgresql.conf file, the new parameter
setting always displays at the bottom of the file. When you use gpconfig to remove a configuration
parameter setting, gpconfig comments out the parameter in all segment postgresql.conf files, thereby
restoring the system default setting. For example, if you use gpconfig to remove (comment out) a
parameter and later add it back (set a new value), there will be two instances of the parameter; one that is
commented out, and one that is enabled and inserted at the bottom of the postgresql.conf file.

After setting a parameter, you must restart your Greenplum Database system or reload the
postgresql.conf files in order for the change to take effect. Whether you require a restart or a reload
depends on the parameter.

For more information about the server configuration parameters, see the Greenplum Database Reference
Guide.

To show the currently set values for a parameter across the system, use the -s option.

gpconfig uses the following environment variables to connect to the Greenplum Database master
instance and obtain system configuration information:

• PGHOST

• PGPORT

• PGUSER

• PGPASSWORD

• PGDATABASE

Options
-c | --change param_name

Changes a configuration parameter setting by adding the new setting to the bottom of the
postgresql.conf files.

-v | --value value

Management Utility Reference Utility Guide

35

The value to use for the configuration parameter you specified with the -c option. By default,
this value is applied to all segments, their mirrors, the master, and the standby master.

-m | --mastervalue master_value

The master value to use for the configuration parameter you specified with the -c option. If
specified, this value only applies to the master and standby master. This option can only be
used with -v.

--masteronly

When specified, gpconfig will only edit the master postgresql.conf file.

-r | --remove param_name

Removes a configuration parameter setting by commenting out the entry in the
postgresql.conf files.

-l | --list

Lists all configuration parameters supported by the gpconfig utility.

-s | --show param_name

Shows the value for a configuration parameter used on all instances (master and segments)
in the Greenplum Database system. If there is a difference in a parameter value among
the instances, the utility displays an error message. Note that the gpconfig utility reads
parameter values directly from the database, and not the postgresql.conf file. If you are
using gpconfig to set configuration parameters across all segments, then running gpconfig
-s to verify the changes, you might still see the previous (old) values. You must reload the
configuration files (gpstop -u) or restart the system (gpstop -r) for changes to take effect.

--file

For a configuration parameter, shows the value from the postgresql.conf file on all
instances (master and segments) in the Greenplum Database system. If there is a difference
in a parameter value among the instances, the utility displays a message. Must be specified
with the -s option.

For example, the configuration parameter statement_mem is set to 64MB for a user with the
ALTER ROLE command, and the value in the postgresql.conf file is 128MB. Running the
command gpconfig -s statement_mem --file displays 128MB. The command gpconfig
-s statement_mem run by the user displays 64MB.

--skipvalidation

Overrides the system validation checks of gpconfig and allows you to operate on any server
configuration parameter, including hidden parameters and restricted parameters that cannot
be changed by gpconfig. When used with the -l option (list), it shows the list of restricted
parameters. This option should only be used to set parameters when directed by Pivotal
Customer Support.

--verbose

Displays additional log information during gpconfig command execution.

--debug

Sets logging output to debug level.

-? | -h | --help

Displays the online help.

Examples
Set the gp_snmp_community parameter to testenv in the master host file only:

gpconfig -c gp_snmp_community -v testenv --masteronly

Management Utility Reference Utility Guide

36

Set the max_connections setting to 100 on all segments and 10 on the master:

gpconfig -c max_connections -v 100 -m 10

Set the server configuration parameters gp_email_to and gp_email_from. These parameters require
single quotes around the values. When you specify the values for the parameters, enclose the values with
double quotes (").

$ gpconfig -c gp_email_from -v "'gpdb-server@example.com'"
$ gpconfig -c gp_email_to -v "'gpdb-admin@example.com'"

In the postgresql.conf file, the parameters are set correctly, with single quotes around the values:

gp_email_from='gpdb-server@example.com'
gp_email_to='gpdb-admin@example.com'

Comment out all instances of the default_statistics_target configuration parameter, and restore the
system default:

gpconfig -r default_statistics_target

List all configuration parameters supported by gpconfig:

gpconfig -l

Show the values of a particular configuration parameter across the system:

gpconfig -s max_connections

See Also
gpstop

Management Utility Reference Utility Guide

37

gpcrondump
Writes out a database to SQL script files. The script files can be used to restore the database using the
gpdbrestore utility. The gpcrondump utility can be called directly or from a crontab entry.

Synopsis
gpcrondump -x database_name
 [-s schema | -S schema | -t schema.table | -T schema.table]
 [--table-file=filename | --exclude-table-file=filename]
 [--schema-file=filename | --exclude-schema-file=filename]
 [--dump-stats]
 [-u backup_directory] [-R post_dump_script] [--incremental]
 [-K timestamp [--list-backup-files]]
 [--prefix prefix_string [--list-filter-tables]
 [-c [--cleanup-date yyyymmdd | --cleanup-total n]]
 [-z] [-r]
 [-f free_space_percent] [-b] [-h] [-H] [-j | -k] [-g] [-G] [-C]
 [-d master_data_directory] [-B parallel_processes] [-a] [-q]
 [-y reportfile] [-l logfile_directory]
 [--email-file path_to_file] [-v]
 { [-E encoding] [--inserts | --column-inserts] [--oids]
 [--no-owner | --use-set-session-authorization] [--no-privileges]
 [--rsyncable]
 { [--ddboost [--replicate --max-streams max_IO_streams]
 [--ddboost-skip-ping] [--ddboost-storage-unit=unit-ID]] } |
 { [--netbackup-service-host netbackup_server
 --netbackup-policy netbackup_policy
 --netbackup-schedule netbackup_schedule [--netbackup-block-size size]]
 [--netbackup-keyword keyword]] } }

gpcrondump --ddboost-host ddboost_hostname
 [--ddboost-host ddboost_hostname ...]
 --ddboost-user ddboost_user --ddboost-backupdir backup_directory
 [--ddboost-remote] [--ddboost-skip-ping]
 [--ddboost-storage-unit=unit-ID]

gpcrondump --ddboost-show-config [--remote]

gpcrondump --ddboost-config-remove

gpcrondump -o [--cleanup-date yyyymmdd | --cleanup-total n]

gpcrondump -?

gpcrondump --version

Description
The gpcrondump utility dumps the contents of a database into SQL script files, which can then be used to
restore the database schema and user data at a later time using gpdbrestore. During a dump operation,
users will still have full access to the database.

By default, dump files are created in their respective master and segment data directories in a directory
named db_dumps/YYYYMMDD. The data dump files are compressed by default using gzip.

The utility backs up the database-level settings for the server configuration parameters
gp_default_storage_options, optimizer, and search_path. The settings are restored when you
restore the database with the gpdbrestore utility and specify the -e option to create an empty target
database before performing a restore operation.

Management Utility Reference Utility Guide

38

After a backup operation completes, the utility checks the gpcrondump status file for SQL execution
errors and displays a warning if an error is found. The default location of the backup status files are in the
db_dumps/date/ directory.

If you specify an option that includes or excludes tables or schemas, such as -t, -T, -s, or -S, the schema
qualified names of the tables that are backed up are listed in the file gp_dump_timestamp_table. The file
is stored in the backup directory of the master segment.

gpcrondump allows you to schedule routine backups of a Greenplum database using cron (a scheduling
utility for UNIX operating systems). Cron jobs that call gpcrondump should be scheduled on the master
host.

Warning: Backing up a database with gpcrondump while simultaneously running ALTER TABLE
might cause gpcrondump to fail.

Backing up a database with gpcrondump while simultaneously running DDL commands might cause
issues with locks. You might see either the DDL command or gpcrondump waiting to acquire locks.

About Database, Schema, and Table Names

You can specify names of databases, schemas, and tables that contain these special characters.

" ' ` ~ # $ % ^ & * () _ - + [] { } > < \ | ; : / ? and the space character.

Note: The characters !, comma (,), and period (.) are not supported. Also, the tab (\t) and
newline (\n) characters are not supported.

When the name contains special characters and is specified on the command line, the name must
be enclosed in double quotes ("). Double quotes are optional for names that do not contain special
characters. For example, either use of quotes is valid on the command line "my#1schema".mytable or
"my#1schema"."mytable". Within the name, these special characters must be escaped with a backslash
(\) : " ` $ \ .

When the name is specified in an input file, the name must not be enclosed in double quotes. Special
characters do not require escaping.

Using Data Domain Boost

The gpcrondump utility is used to schedule Data Domain Boost (DD Boost) backup operations. The
utility is also used to set, change, or remove one-time credentials and storage unit ID for DD Boost. The
gpcrondump, gpdbrestore, and gpmfr utilities use the DD Boost credentials to access Data Domain
systems. DD Boost information is stored in these files.

• DDBOOST_CONFIG is used by gpdbrestore and gpcrondump for backup and restore operations with
the Data Domain system. The gpdbrestore utility creates or updates the file when you specify Data
Domain information with the --ddboost-host option.

• DDBOOST_MFR_CONFIG is used by gpmfr for remote replication operations with the remote Data Domain
system. The gpdbrestore utility creates or updates the file when you specify Data Domain information
with the --ddboost-host option and the --ddboost-remote option.

The configuration files are created in the current user (gpadmin) home directory on the Greenplum
Database master and segment hosts. The path and file name cannot be changed.

When you use DD Boost to perform a backup operation, the operation uses a storage unit on a Data
Domain system. You can specify the storage unit ID when you perform these operations:

• When you set the DD Boost credentials with the --ddboost-host option. If you specify the --ddboost-
storage-unit option, the storage unit ID is written to the Greenplum Database DD Boost configuration
file DDBOOST_CONFIG. If the storage unit ID is not specified, the default value is GPDB.

• When you perform a backup operation with the --ddboost option. When you specify the --ddboost-
storage-unit option, the utility uses the specified Data Domain storage unit for the operation. The
value in the configuration file is not changed.

Management Utility Reference Utility Guide

39

When performing a full backup operation (not an incremental backup), the storage unit is created on the
Data Domain system if it does not exist.

A storage unit is not created if these gpcrondump options are specified: --incremental, --list-backup-
file, --list-filter-tables, -o, or --ddboost-config-remove.

Use the gpcrondump option --ddboost-show-config to display the current DD Boost configuration
information from the master configuration file. Specify the --remote option to display the configuration
information for the remote Data Domain system.

For information about using DD Boost and Data Domain systems with Greenplum Database, see "Backing
Up and Restoring Databases" in the Greenplum Database Administrator Guide.

Note: For Greenplum Database 4.3.12.0 and later releases, this is the format of the backup file
names created by gpcrondump.

prefix_gp_dump_content_dbid_timestamp

The content and dbid are identifiers for the Greenplum Database segment instances that are
assigned by Greenplum Database. For information about the identifiers, see the Greenplum
Database system catalog table gp_segment_configuration in the Greenplum Database Reference
Guide.

For Greenplum Database 4.3.11.3 and earlier releases, this is the format.

prefix_gp_dump_[0 or 1]_dbid_timestamp

Where the value 0 is for segment instances and the value 1 is for the master instance.

The gpdbrestore utility in Greenplum Database 4.3.12.0 and later releases recognizes both
backup file name formats.

Using NetBackup

Veritas NetBackup integration is included with Pivotal Greenplum Database. Greenplum Database must be
configured to communicate with the Veritas NetBackup master server that is used to backup the database.

When backing up a large amount of data, set the NetBackup CLIENT_READ_TIMEOUT option to a value that
is at least twice the expected duration of the operation (in seconds). The CLIENT_READ_TIMEOUT default
value is 300 seconds (5 minutes).

See the Greenplum Database Administrator Guide for information on configuring Greenplum Database and
NetBackup and backing up and restoring with NetBackup.

About Return Codes

The following is a list of the codes that gpcrondump returns.

• 0 – Dump completed with no problems

• 1 – Dump completed, but one or more warnings were generated

• 2 – Dump failed with a fatal error

Email Notifications

To have gpcrondump send out status email notifications after a back up operation completes, you must
place a file named mail_contacts in the home directory of the Greenplum superuser (gpadmin) or in the
same directory as the gpcrondump utility ($GPHOME/bin). This file should contain one email address per
line. gpcrondump will issue a warning if it cannot locate a mail_contacts file in either location. If both
locations have a mail_contacts file, then the one in $HOME takes precedence.

You can customize the email Subject and From lines of the email notifications that gpcrondump sends after
a back up completes for a database. You specify the option --email-file with the location of a YAML file
that contains email Subject and From lines that gpcrondump uses. for information about the format of the
YAML file, see File Format for Customized Emails.

Management Utility Reference Utility Guide

40

Note: The UNIX mail utility must be running on Greenplum Database host and must be configured
to allow the Greenplum superuser (gpadmin) to send email.

Limitations

Dell EMC DD Boost is integrated with Pivotal Greenplum Database and requires a DD Boost license. Open
source Greenplum Database cannot use the DD Boost software, but can back up to a Dell EMC Data
Domain system mounted as an NFS share on the Greenplum master and segment hosts.

NetBackup is not compatible with DD Boost. Both NetBackup and DD Boost cannot be used in a single
back up operation.

For incremental back up sets, a full backup and associated incremental backups, the backup set must be
on a single device. For example, a backup set must all be on a file system. The backup set cannot have
some backups on the local file system and others on a Data Domain system or a NetBackup system.

For external tables, the table definition is backed up, however the data is not backed up. For leaf child
partition of a partitioned table that is a readable external table, the leaf child partition data is not backed up.

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-b (bypass disk space check)

Bypass disk space check. The default is to check for available disk space, unless --ddboost
is specified. When using Data Domain Boost, this option is always enabled.

Note: Bypassing the disk space check generates a warning message. With a
warning message, the return code for gpcrondump is 1 if the dump is successful.
(If the dump fails, the return code is 2, in all cases.)

-B parallel_processes

The number of segments to check in parallel for pre/post-dump validation. If not specified,
the utility will start up to 60 parallel processes depending on how many segment instances it
needs to dump.

-c (clear old dump files first)

Specify this option to delete old backups before performing a back up. In the db_dumps
directory, the directory where the name is the oldest date is deleted. If the directory name is
the current date, the directory is not deleted. The default is to not delete old backup files.

The deleted directory might contain files from one or more backups.

Warning: Before using this option, ensure that incremental backups required
to perform the restore are not deleted. The gpdbrestore utility option --list-
backup lists the backup sets required to perform a backup.

If --ddboost is specified, only the old files on Data Domain Boost are deleted.

You can specify the option --cleanup-date or --cleanup-total to specify backup sets to
delete.

This option is not supported with the -u option.

-C (clean catalog before restore)

Clean out the catalog schema prior to restoring database objects. gpcrondump adds the DROP
command to the SQL script files when creating the backup files. When the script files are
used by the gpdbrestore utility to restore database objects, the DROP commands remove
existing database objects before restoring them.

If --incremental is specified and the files are on NFS storage, the -C option is not
supported. The database objects are not dropped if the -C option is specified.

--cleanup-date=yyyymmdd

Management Utility Reference Utility Guide

41

Remove backup sets for the date yyyy-mm-dd. The date format is yyyymmdd. If multiple
backup sets were created on the date, all the backup sets for that date are deleted. If no
backup sets are found, gpcrondump returns a warning message and no backup sets are
deleted. If the -c option is specified, the backup process continues.

Valid only with the -c or -o option.

Warning: Before using this option, ensure that incremental backups required
to perform the restore are not deleted. The gpdbrestore utility option --list-
backup lists the backup sets required to perform a backup.

--cleanup-total=n

Remove the n oldest backup sets based on the backup timestamp.

If there are fewer than n backup sets, gpcrondump returns a warning message and no
backup sets are deleted. If the -c option is specified, the backup process continues.

Valid only with the -c or -o option.

Warning: Before using this option, ensure that incremental backups required
to perform the restore are not deleted. The gpdbrestore utility option --list-
backup lists the backup sets required to perform a backup.

--column-inserts

Dump data as INSERT commands with column names.

If --incremental is specified, this option is not supported.

-d master_data_directory

The master host data directory. If not specified, the value set for $MASTER_DATA_DIRECTORY
will be used.

--ddboost [--replicate --max-streams max_IO_streams] [--ddboost-skip-ping]

Use Data Domain Boost for this backup. Before using Data Domain Boost, set up the Data
Domain Boost credential with the --ddboost-host option. Also, see Using Data Domain
Boost.

If --ddboost is specified, the -z option (uncompressed) is recommended.

Backup compression (turned on by default) should be turned off with the -z option. Data
Domain Boost will deduplicate and compress the backup data before sending it to the Data
Domain system.

--replicate --max-streamsmax_IO_streams is optional. If you specify this option,
gpcrondump replicates the backup on the remote Data Domain server after the backup is
complete on the primary Data Domain server. max_IO_streams specifies the maximum
number of Data Domain I/O streams that can be used when replicating the backup set on the
remote Data Domain server from the primary Data Domain server.

You can use gpmfr to replicate a backup if replicating a backup with gpcrondump takes a
long time and prevents other backups from occurring. Only one instance of gpcrondump can
be running at a time. While gpcrondump is being used to replicate a backup, it cannot be
used to create a backup.

You can run a mixed backup that writes to both a local disk and Data Domain. If you want
to use a backup directory on your local disk other than the default, use the -u option.
Mixed backups are not supported with incremental backups. For more information about
mixed backups and Data Domain Boost, see "Backing Up and Restoring Databases" in the
Greenplum Database Administrator Guide.

Important: Never use the Greenplum Database default backup options with
Data Domain Boost.

To maximize Data Domain deduplication benefits, retain at least 30 days of backups.

Management Utility Reference Utility Guide

42

Note: The -b, -c, -f, -G, -g, -R, and -u options change if --ddboost is
specified. See the options for details.

The DDBoost backup options are not supported if the NetBackup options are specified.

--ddboost-host ddboost_hostname [--ddboost-host ddboost_hostname ...]
--ddboost-user ddboost_user --ddboost-backupdir backup_directory
[--ddboost-remote] [--ddboost-skip-ping]

Sets the Data Domain Boost credentials. Do not combine this options with any other
gpcrondump options. Do not enter just one part of this option.

ddboost_hostname is the IP address (or hostname associated to the IP) of the host. There
is a 30-character limit. If you use two or more network connections to connect to the Data
Domain system, specify each connection with the --ddboost-host option.

ddboost_user is the Data Domain Boost user name. There is a 30-character limit.

backup_directory is the location for the backup files, configuration files, and global objects on
the Data Domain system. The location on the system is GPDB/backup_directory.

--ddboost-remote is optional. It indicates that the configuration parameters are for the
remote Data Domain system used for backup replication and Data Domain Boost managed
file replication. Credentials for the remote Data Domain system must be configured to use the
--replicate option or the gpmfr management utility.

For example:

gpcrondump --ddboost-host 192.0.2.230 --ddboost-user ddboostusername --
ddboost-backupdir gp_production

Note: When setting Data Domain Boost credentials, the --ddboost-backupdir
option is ignored if the --ddboost-remote option is specified for a Data Domain
system that is used for the replication of backups. The --ddboost-backupdir
value is for backup operations with a Data Domain system, not for backup
replication.

After running gpcrondump with these options, the system verifies the limits on the host and
user names and prompts for the Data Domain Boost password. Enter the password when
prompted; the password is not echoed on the screen. There is a 40-character limit on the
password that can include lowercase letters (a-z), uppercase letters (A-Z), numbers (0-9),
and special characters ($, %, #, +, etc.).

The system verifies the password. After the password is verified, the system creates
encrypted DDBOOST_CONFIG files in the user's home directory.

In the example, the --ddboost-backupdir option specifies the backup directory
gp_production in the Data Domain Storage Unit GPDB.

Note: If there is more than one operating system user using Data Domain Boost
for backup and restore operations, repeat this configuration process for each of
those users.

Important: Set up the Data Domain Boost credential before running any Data
Domain Boost backups with the --ddboost option, described above.

--ddboost-config-remove

Removes all Data Domain Boost credentials from the master and all segments on the
system. Do not enter this option with any other gpcrondump option.

--ddboost-show-config [--remote]

Optional. Displays the DD Boost configuration file information for the Data Domain server.
Specify this option with the --remote option to display the configuration file information for
remote Data Domain server. No backup is performed.

Management Utility Reference Utility Guide

43

--ddboost-skip-ping

Specify this option to skip the ping of a Data Domain system. When working with a Data
Domain system, ping is used to ensure that the Data Domain system is reachable. If the Data
Domain system is configured to block ICMP ping probes, specify this option.

--ddboost-storage-unit=unit-ID

Optional. Specify a valid storage unit name for the Data Domain system that is used for
backup and restore operations. The default storage unit ID is GPDB. See Using Data Domain
Boost.

• Specify this option with the --ddboost-host option to create or update the storage unit ID
in the DD Boost credentials file.

• Specify this option with the --ddboost option to override the storage unit ID in the DD
Boost credentials file when performing a backup operation.

When performing a full backup operation (not an incremental backup), the storage unit is
created on the Data Domain system if it does not exist.

A replication operation uses the same storage unit ID on both local and remote Data Domain
systems.

--dump-stats

Specify this option to back up database statistics. The data is written to an SQL file and can
be restored manually or with gpdbrestore utility.

The statistics are written in the master data directory to
db_dumps/YYYYMMDD/prefix_string_gp_statistics_-1_1_timestamp.

If this option is specified with options that include or exclude tables or schemas, the utility
backs up only the statistics for the tables that are backed up.

-E encoding

Character set encoding of dumped data. Defaults to the encoding of the database being
dumped. See the Greenplum Database Reference Guide for the list of supported character
sets.

-email-file path_to_file

Specify the fully-qualified location of the YAML file that contains the customized Subject and
From lines that are used when gpcrondump sends notification emails about a database back
up.

For information about the format of the YAML file, see File Format for Customized Emails.

-f free_space_percent

When checking that there is enough free disk space to create the dump files, specifies a
percentage of free disk space that should remain after the dump completes. The default is 10
percent.

This is option is not supported if --ddboost or --incremental is specified.

-g (copy config files)

Secure a copy of the master and segment configuration files postgresql.conf,
pg_ident.conf, and pg_hba.conf. These configuration files are dumped in the master or
segment data directory to db_dumps/YYYYMMDD/config_files_timestamp.tar.

If --ddboost is specified, the backup is located on the default storage unit in the directory
specified by --ddboost-backupdir when the Data Domain Boost credentials were set.

-G (dump global objects)

Back up database metadata information that is not associated with any particular schema or
table such as roles and tablespaces. Global objects are dumped in the master data directory
to db_dumps/YYYYMMDD/prefix_string_gp_global_-1_1_timestamp.

Management Utility Reference Utility Guide

44

If --ddboost is specified, the backup is located on the default storage unit in the directory
specified by --ddboost-backupdir when the Data Domain Boost credentials were set.

-h (record dump details)

Record details of the database dump in database table public.gpcrondump_history in
the database supplied via -x option. The gpcrondump utility will create the table if it does
not currently exist. The public schema must exist in the database so that gpcrondump can
create the public.gpcrondump_history table. The default is to record the database dump
details.

This option will be deprecated in a future release.

-H (disable recording dump details)

Disable recording details of database dump in database table public.gpcrondump_history
in the database supplied via -x option. If not specified, the utility will create/update the history
table. The -H option cannot be selected with the -h option.

Note: The gpcrondump utility creates the public.gpcrondump_history table
by default. If the public schema has been deleted from the database, you must
specify the -H option to prevent gpcrondump from returning an error when it
attempts to create the table.

--incremental (backup changes to append-optimized tables)

Adds an incremental backup to a backup set. When performing an incremental backup,
the complete backup set created prior to the incremental backup must be available. The
complete backup set includes the following backup files:

• The last full backup before the current incremental backup

• All incremental backups created between the time of the full backup the current
incremental backup

An incremental backup is similar to a full back up except for append-optimized tables,
including column-oriented tables. An append-optimized table is backed up only if one of the
following operations was performed on the table after the last backup.

ALTER TABLE
INSERT
DELETE
UPDATE
TRUNCATE
DROP and then re-create the table

For partitioned append-optimized tables, only the changed table partitions are backed up.

The -u option must be used consistently within a backup set that includes a full and
incremental backups. If you use the -u option with a full backup, you must use the -u option
when you create incremental backups that are part of the backup set that includes the full
backup.

You can create an incremental backup for a full backup of set of database tables. When you
create the full backup, specify the --prefix option to identify the backup. To include a set of
tables in the full backup, use either the -t option or --table-file option. To exclude a set of
tables, use either the -T option or the --exclude-table-file option. See the description of
the option for more information on its use.

To create an incremental backup based on the full backup of the set of tables, specify the
option --incremental and the --prefix option with the string specified when creating the
full backup. The incremental backup is limited to only the tables in the full backup.

Warning: gpcrondump does not check for available disk space prior to
performing an incremental backup.

Important: An incremental back up set, a full backup and associated
incremental backups, must be on a single device. For example, a the backups

Management Utility Reference Utility Guide

45

in a backup set must all be on a file system or must all be on a Data Domain
system.

--inserts

Dump data as INSERT, rather than COPY commands.

If --incremental is specified, this option is not supported.

-j (vacuum before dump)

Run VACUUM before the dump starts.

-K timestamp [--list-backup-files]

Specify the timestamp that is used when creating a backup. The timestamp is 14-digit string
that specifies a date and time in the format yyyymmddhhmmss. The date is used for backup
directory name. The date and time is used in the backup file names. If -K timestamp is not
specified, a timestamp is generated based on the system time.

When adding a backup to set of backups, gpcrondump returns an error if the timestamp does
not specify a date and time that is more recent than all other backups in the set.

--list-backup-files is optional. When you specify both this option and the -K timestamp
option, gpcrondump does not perform a backup. gpcrondump creates two text files that
contain the names of the files that will be created when gpcrondump backs up a Greenplum
database. The text files are created in the same location as the backup files.

The file names use the timestamp specified by the -K timestamp option and have the suffix
_pipes and _regular_files. For example:

gp_dump_20130514093000_pipes
gp_dump_20130514093000_regular_files

The _pipes file contains a list of file names that be can be created as named pipes. When
gpcrondump performs a backup, the backup files will generate into the named pipes.
The _regular_files file contains a list of backup files that must remain regular files.
gpcrondump and gpdbrestore use the information in the regular files during backup and
restore operations. To backup a complete set of Greenplum Database backup files, the files
listed in the _regular_files file must also be backed up after the completion of the backup
job.

To use named pipes for a backup, you need to create the named pipes on all the Greenplum
Database hosts and make them writable before running gpcrondump.

If --ddboost is specified, -K timestamp [--list-backup-files] is not supported.

-k (vacuum after dump)

Run VACUUM after the dump has completed successfully.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

--netbackup-block-size size

Specify the block size, in bytes, of data being transferred to the Veritas NetBackup server.
The default is 512 bytes.

NetBackup options are not supported if DDBoost backup options are specified.

--netbackup-keyword keyword

Specify a keyword for the backup that is transferred to the Veritas NetBackup server.
NetBackup adds the keyword property and the specified keyword value to the
NetBackup .img files that are created for the backup.

The maximum length of this parameter is 127 characters.

NetBackup options are not supported if DDBoost backup options are specified.

Management Utility Reference Utility Guide

46

--netbackup-policy netbackup_policy

The name of the NetBackup policy created for backing up Greenplum Database.

NetBackup options are not supported if DDBoost backup options are specified.

The maximum length of this parameter is 127 characters.

--netbackup-service-host netbackup_server

The NetBackup master server that Greenplum Database connects to when backing up to
NetBackup.

NetBackup options are not supported if DDBoost backup options are specified.

The maximum length of this parameter is 127 characters.

--netbackup-schedule netbackup_schedule

The name of the NetBackup schedule created for backing up Greenplum Database.

NetBackup options are not supported if DDBoost backup options are specified

The maximum length of this parameter is 127 characters.

--no-owner

Do not output commands to set object ownership.

--no-privileges

Do not output commands to set object privileges (GRANT/REVOKE commands).

-o (clear old dump files only)

Clear out old dump files only, but do not run a dump. This will remove the oldest dump
directory except the current date's dump directory. All dump sets within that directory will be
removed.

Warning: Before using this option, ensure that incremental backups required
to perform the restore are not deleted. The gpdbrestore utility option --list-
backup lists the backup sets required to perform a backup.

If --ddboost is specified, only the old files on Data Domain Boost are deleted.

You can specify the option --cleanup-date or --cleanup-total to specify backup sets to
delete.

If --incremental is specified, this option is not supported.

--oids

Include object identifiers (oid) in dump data.

If --incremental is specified, this option is not supported.

--prefix prefix_string [--list-filter-tables]

Prepends prefix_string followed by an underscore character (_) to the names of all the
backup files created during a backup.

--list-filter-tables is optional. When you specify both options, gpcrondump does
not perform a backup. For the full backup created by gpcrondump that is identified by the
prefix-string, the tables that were included or excluded for the backup are listed. You
must also specify the --incremental option if you specify the --list-filter-tables
option.

If --ddboost is specified, --prefixprefix_string [--list-filter-tables] is not supported.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

-r (rollback on failure)

Management Utility Reference Utility Guide

47

Rollback the dump files (delete a partial dump) if a failure is detected. The default is to not
rollback.

Note: This option is not supported if --ddboost is specified.

-R post_dump_script

The absolute path of a script to run after a successful dump operation. For example, you
might want a script that moves completed dump files to a backup host. This script must
reside in the same location on the master and all segment hosts.

--rsyncable

Passes the --rsyncable flag to the gzip utility to synchronize the output occasionally, based
on the input during compression. This synchronization increases the file size by less than 1%
in most cases. When this flag is passed, the rsync(1) program can synchronize compressed
files much more efficiently. The gunzip utility cannot differentiate between a compressed file
created with this option, and one created without it.

-s schema_name

Dump all the tables that are qualified by the specified schema in the database. The -s option
can be specified multiple times. System catalog schemas are not supported. If you want to
specify multiple schemas, you can also use the --schema-file=filename option in order not
to exceed the maximum token limit.

Only a set of tables or set of schemas can be specified. For example, the -s option cannot be
specified with the -t option.

If --incremental is specified, this option is not supported.

-S schema_name

A schema name to exclude from the database dump. The -S option can be specified multiple
times. If you want to specify multiple schemas, you can also use the --exclude-schema-
file=filename option in order not to exceed the maximum token limit.

Only a set of tables or set of schemas can be specified. For example, this option cannot be
specified with the -t option.

If --incremental is specified, this option is not supported.

-t schema.table_name

Dump only the named table in this database. The -t option can be specified multiple times.
If you want to specify multiple tables, you can also use the --table-file=filename option in
order not to exceed the maximum token limit.

Only a set of tables or set of schemas can be specified. For example, this option cannot be
specified with the -s option.

If --incremental is specified, this option is not supported.

-T schema.table_name

A table name to exclude from the database dump. The -T option can be specified multiple
times. If you want to specify multiple tables, you can also use the --exclude-table-
file=filename option in order not to exceed the maximum token limit.

Only a set of tables or set of schemas can be specified. For example, this option cannot be
specified with the -s option.

If --incremental is specified, this option is not supported.

--exclude-schema-file=filename

Excludes all the tables that are qualified by the specified schemas listed in the filename from
the database dump. The file filename contains any number of schemas, listed one per line.

Only a set of tables or set of schemas can be specified. For example, this option cannot be
specified with the -t option.

Management Utility Reference Utility Guide

48

If --incremental is specified, this option is not supported.

--exclude-table-file=filename

Excludes all tables listed in the filename from the database dump. The file filename contains
any number of tables, listed one per line.

Only a set of tables or set of schemas can be specified. For example, this cannot be specified
with the -s option.

If --incremental is specified, this option is not supported.

--schema-file=filename

Dumps only the tables that are qualified by the schemas listed in the filename. The file
filename contains any number of schemas, listed one per line.

Only a set of tables or set of schemas can be specified. For example, this option cannot be
specified with the -t option.

If --incremental is specified, this option is not supported.

--table-file=filename

Dumps only the tables listed in the filename. The file filename contains any number of tables,
listed one per line.

Only a set of tables or set of schemas can be specified. For example, this cannot be specified
with the -s option.

If --incremental is specified, this option is not supported.

-u backup_directory

Specifies the absolute path where the backup files will be placed on each host. If the path
does not exist, it will be created, if possible. If not specified, defaults to the data directory of
each instance to be backed up. Using this option may be desirable if each segment host has
multiple segment instances as it will create the dump files in a centralized location rather than
the segment data directories.

Note: This option is not supported if --ddboost is specified.

--use-set-session-authorization

Use SET SESSION AUTHORIZATION commands instead of ALTER OWNER commands to set
object ownership.

-v | --verbose

Specifies verbose mode.

--version (show utility version)

Displays the version of this utility.

-x database_name

Required. The name of the Greenplum database to dump.

-y reportfile

This option is deprecated and will be removed in a future release. If specified, a warning
message is returned stating that the -y option is deprecated.

Specifies the full path name where a copy of the backup job log file is placed on the master
host. The job log file is created in the master data directory or if running remotely, the current
working directory.

-z (no compression)

Do not use compression. Default is to compress the dump files using gzip.

Use this option (-z) for NFS and Data Domain Boost backups.

-? (help)

Management Utility Reference Utility Guide

49

Displays the online help.

File Format for Customized Emails
You can configure gpcrondump to send an email notification after a back up operation completes for a
database. To customize the From and Subject lines of the email that are sent for a database, you create
a YAML file and specify the location of the file with the option --email-file. In the YAML file, you can
specify a different From and Subject line for each database that gpcrondump backs up. This is the format
of the YAML file to specify a custom From and Subject line for a database:

EMAIL_DETAILS:
 -
 DBNAME: database_name
 FROM: from_user
 SUBJECT: subject_text

When email notification is configured for gpcrondump, the from_user and the subject_text are the strings
that gpcrondump uses in the email notification after completing the back up for database_name.

This example YAML file specifies different From and Subject lines for the databases testdb100 and
testdb200.

EMAIL_DETAILS:
 -
 DBNAME: testdb100
 FROM: RRP_MPE2_DCA_1
 SUBJECT: backup completed for Database 'testdb100'
 -
 DBNAME: testdb200
 FROM: Report_from_DCDDEV_host
 SUBJECT: Completed backup for database 'testdb200'

Examples
Call gpcrondump directly and dump mydatabase (and global objects):

gpcrondump -x mydatabase -c -g -G

A crontab entry that runs a backup of the sales database (and global objects) nightly at one past
midnight:

01 0 * * * /home/gpadmin/gpdump.sh >> gpdump.log

The content of dump script gpdump.sh is:

#!/bin/bash
 export GPHOME=/usr/local/greenplum-db
 export MASTER_DATA_DIRECTORY=/data/gpdb_p1/gp-1
 . $GPHOME/greenplum_path.sh
 gpcrondump -x sales -c -g -G -a -q

This example creates two text files, one with the suffix _pipes and the other with _regular_files. The
_pipes file contain the file names that can be named pipes when you backup the Greenplum database
mytestdb.

gpcrondump -x mytestdb -K 20131030140000 --list-backup-files

To use incremental backup with a set of database tables, you must create a full backup of the set of tables
and specify the --prefix option to identify the backup set. The following example uses the --table-file

Management Utility Reference Utility Guide

50

option to create a full backup of the set of files listed in the file user-tables. The prefix user_backup
identifies the backup set.

gpcrondump -x mydatabase --table-file=user-tables
 --prefix user_backup

To create an incremental backup for the full backup created in the previous example, specify the --
incremental option and the option --prefix user_backup to identify backup set. This example creates
an incremental backup.

gpcrondump -x mydatabase --incremental --prefix user_backup

This command lists the tables that were included or excluded for the full backup.

gpcrondump -x mydatabase --incremental --prefix user_backup
 --list-filter-tables

This command backs up the database customer and specifies a NetBackup policy and schedule that are
defined on the NetBackup master server nbu_server1. A block size of 1024 bytes is used to transfer data
to the NetBackup server.

gpcrondump -x customer --netbackup-service-host=nbu_server1
 --netbackup-policy=gpdb_cust --netbackup-schedule=gpdb_backup
 --netbackup-block-size=1024

See Also
gpdbrestore

Management Utility Reference Utility Guide

51

gpdbrestore
Restores a database from a set of dump files generated by gpcrondump.

Synopsis
gpdbrestore { -t timestamp_key { [-L] |
 [--netbackup-service-host netbackup_server
 [--netbackup-block-size size]] }
 -b YYYYMMDD | -R hostname:path_to_dumpset | -s database_name }
 [--noplan] [--noanalyze] [-u backup_directory] [--list-backup]
 [--prefix prefix_string] [--report-status-dir report_directory]
 [-S schema_name]
 [-T schema.table] [--table-file file_name] [--truncate] [-e]
 [-m]
 [-restore-stats [include | only]]
 [-G [include | only]] [--change-schema schema_name]
 [-B parallel_processes] [-d master_data_directory] [-a] [-q]
 [-l logfile_directory] [-v]
 [--ddboost [--ddboost-storage-unit=unit-ID]]
 [--redirect database_name]

gpdbrestore -?

gpdbrestore --version

Description
The gpdbrestore utility recreates the data definitions (schema) and user data in a Greenplum database
using the script files created by gpcrondump operations.

When you restore from an incremental backup, the gpdbrestore utility assumes the complete backup set
is available. The complete backup set includes the following backup files:

• The last full backup before the specified incremental backup

• All incremental backups created between the time of the full backup the specified incremental backup

The gpdbrestore utility provides the following functionality:

• Automatically reconfigures for compression.

• Validates the number of dump files are correct (for primary only, mirror only, primary and mirror, or a
subset consisting of some mirror and primary segment dump files).

• If a failed segment is detected, restores to active segment instances.

• Except when restoring data from a NetBackup server, you do not need to know the complete timestamp
key (-t) of the backup set to restore. Additional options are provided to instead give just a date (-b),
backup set directory location (-R), or database name (-s) to restore.

• The -R option allows the ability to restore from a backup set located on a host outside of the Greenplum
Database array (archive host). Ensures that the correct dump file goes to the correct segment instance.

• Identifies the database name automatically from the backup set.

• Allows you to restore particular tables only (-T option) instead of the entire database. Note that single
tables are not automatically dropped or truncated prior to restore.

Performs an ANALYZE operation on the tables that are restored. You can disable the ANALYZE operation
by specifying the option --noanalyze.

• Can restore global objects such as roles and tablespaces (-G option).

• Detects if the backup set is primary segments only or primary and mirror segments and performs the
appropriate restore operation.

Management Utility Reference Utility Guide

52

• Allows you to drop the target database before a restore in a single operation.

If the backups were created with Greenplum Database 4.3.11.2 or later, the backups contain the database-
level settings for the server configuration parameters gp_default_storage_options, optimizer, and
search_path, the settings are restored when you perform a restore operation and specify the -e option to
create an empty target database before performing a restore operation.

Important: When restoring table data to an existing table, the utility assumes that the database
table definition is the same as the table that was backed up. The utility does not check the table
definitions.

Note: The utility gpdbrestore sets the server configuration parameter gp_strict_xml_parse to
false during a restore operation. This allows the operation to restore any valid XML data from a
backup if needed.

Database, Schema, and Table Names

You can specify names of databases, schemas, and tables that contain these special characters.

" ' ` ~ # $ % ^ & * () _ - + [] { } > < \ | ; : / ? and the space character.

Note: The characters !, comma (,), and period (.) are not supported. Also, the tab (\t) and
newline (\n) characters are not supported.

When the name contains special characters and is specified on the command line, the name must
be enclosed in double quotes ("). Double quotes are optional for names that do not contain special
characters. For example, either use of quotes is valid on the command line "my#1schema".mytable or
"my#1schema"."mytable". Within the name, these special characters must be escaped with a backslash
(\) : " ` $ \ .

When the name is specified in an input file, the name must not be enclosed in double quotes. Special
characters do not require escaping.

Restoring from a Data Domain System with DD Boost

When you create a backup with gpcrondump using DD Boost, the backup is stored on a Data Domain
system storage unit. When restore the backup, you must use the same storage unit ID that was used when
you backed up the data. You can use the gpcrondump option --ddboost-show-config to display the
current DD Boost configuration information that includes the storage unit ID.

For information about using DD Boost and Data Domain systems with Greenplum Database, see "Backing
Up and Restoring Databases" in the Greenplum Database Administrator Guide.

NetBackup is not compatible with DD Boost. Both NetBackup and DD Boost cannot be used in a single
back up operation.

Restoring a Database from NetBackup

Greenplum Database must be configured to communicate with the Veritas NetBackup master server that is
used to restore database data. See the Greenplum Database System Administrator Guide for information
about configuring Greenplum Database and NetBackup.

When restoring from NetBackup server, you must specify the timestamp of the backup with the -t option.

When restoring a large amount of data, set the NetBackup CLIENT_READ_TIMEOUT option to a value that
is at least twice the expected duration of the operation (in seconds). The CLIENT_READ_TIMEOUT default
value is 300 seconds (5 minutes).

NetBackup is not compatible with DD Boost. Both NetBackup and DD Boost cannot be used in a single
back up operation.

Restoring a Database with Named Pipes

If you used named pipes when you backed up a database with gpcrondump, named pipes with the backup
data must be available when restoring the database from the backup.

Error Reporting

Management Utility Reference Utility Guide

53

After a restore operation completes, the utility checks the gpdbrestore status file for SQL execution
errors and displays a warning if an error is found. The default location of the restore status files are in the
db_dumps/date/ directory.

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-b YYYYMMDD

Looks for dump files in the segment data directories on the Greenplum Database array of
hosts in db_dumps/YYYYMMDD. If --ddboost is specified, the systems looks for dump files
on the Data Domain Boost host.

-B parallel_processes

The number of segments to check in parallel for pre/post-restore validation. If not specified,
the utility will start up to 60 parallel processes depending on how many segment instances it
needs to restore.

--change-schema=schema_name

Optional. Restores tables from a backup created with gpcrondump to a different schema. The
schema_name must exist in the database. If the schema does not exist, the utility returns an
error. System catalog schemas are not supported.

You must specify tables to restore with the -T and --table-file options. If a table that is
being restored exists in schema-name, the utility returns a warning and attempts to append
the data to the table from the backup. You can specify the --trunctate option to truncate
table data before restoring data to the table from the backup.

This option is not supported if -S is specified.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

--ddboost [--ddboost-storage-unit=unit-ID]

Use Data Domain Boost for this restore operation, if the --ddboost option was specified
when the data was backed up with the gpcrondump utility. Before using Data Domain Boost,
make sure the one-time Data Domain Boost credential setup is complete.

The --ddboost-storage-unit option is optional. When restoring a backup from a Data
Domain server, you must use the same storage unit that was used when you backed up the
data.

See Restoring from a Data Domain System with DD Boost.

If you backed up Greenplum Database configuration files with the gpcrondump option -g and
specified the --ddboost option, you must manually restore the backup from the Data Domain
system. The configuration files must be restored for the Greenplum Database master and all
the hosts and segments. The backup location on the Data Domain system is the directory
unit_ID/backup_directory/date. The backup_directory is set when you specify the Data
Domain credentials with gpcrondump. The unit_ID is the Data Domain system storage unit
that was used when you backed up the database.

This option is not supported if --netbackup-service-host is specified.

-e (create target database before restore)

Creates the target database and then performs a restore operation. If the target database
exists, drops the existing database before creating the database and performing a restore
operation.

Management Utility Reference Utility Guide

54

If the backup is created with Greenplum Database 4.3.11.2 or later, the utility
restores database-level settings for the server configuration parameters
gp_default_storage_options, optimizer, and search_path.

-G [include | only] (restore global objects)

Restores database metadata information that is not associated with a specific
schema or table, such as roles and tablespaces, if the global object dump file
db_dumps/date/prefix_string_gp_global_-1_1_timestamp is found in the master data
directory. The global object file is created with the gpcrondump option -G.

• The keyword include restores global objects in addition to performing a restore. This is
the default if no keyword is specified.

• The keyword only restores only global objects. No other database objects or database
table data are restored.

The -m option restores metadata associated with schemas or tables.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

--list-backup

Lists the set of full and incremental backup sets required to perform a restore based on the
timestamp_key specified with the -t option and the location of the backup set.

This option is supported only if the timestamp_key is for an incremental backup.

-L (list tablenames in backup set)

When used with the -t option, lists the table names that exist in the named backup set and
exits. Does not perform a restore.

-m (restore metadata only)

Restores database metadata information such schema and table definitions and information
created by SET statements. This option does not restore database table data. All table and
schema metadata is restored unless options are specified that include or exclude tables or
schemas. If table or schema filters are specified, the utility restores the schema and table
metadata only for the schemas and tables that are specified to be restored.

Database information that is not associated with a specific schema or table, such as roles
and tablespaces, is not restored. You can specify the -G option with this option to restore
global metadata that was backed up with the gpcrondump utility.

Database statistics are not restored. You can specify the --restore-stats option to restore
statistics that were backed up with the gpcrondump utility.

Not supported with the --noplan or --noanalyze options.

--netbackup-block-size size

Specify the block size, in bytes, of data being transferred from the Veritas NetBackup server.
The default is 512 bytes.

NetBackup options are not supported if DDBoost backup options are specified.

--netbackup-service-host netbackup_server

The NetBackup master server that Greenplum Database connects to when backing up to
NetBackup. If you specify this option, you must specify the timestamp of the backup with the
-t option.

The maximum length for the this parameter is 127 characters.

This option is not supported with any of the these options: -R, -s, -b, -L, or --ddboost.

NetBackup options are not supported if DDBoost backup options are specified.

--noanalyze

Management Utility Reference Utility Guide

55

The ANALYZE command is not run after a successful restore. The default is to run the
ANALYZE command on restored tables. This option is useful if running ANALYZE on tables in
your database requires a significant amount of time.

If this option is specified, you should run ANALYZE manually on restored tables. Failure to run
ANALYZE following a restore might result in poor database performance.

Not supported with the -m option.

--noplan

Restores only the data backed up during the incremental backup specified by the
timestamp_key. No other data from the complete backup set are restored. The full backup set
containing the incremental backup must be available.

If the timestamp_key specified with the -t option does not reference an incremental backup,
an error is returned.

Not supported with the -m option.

--prefix prefix_string

If you specified the gpcrondump option --prefix prefix_string to create the backup, you
must specify this option with the prefix_string when restoring the backup.

If you created a full backup of a set of tables with gpcrondump and specified a prefix, you can
use gpcrondump with the options --list-filter-tables and --prefix prefix_string to
list the tables that were included or excluded for the backup.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

-R hostname:path_to_dumpset

Allows you to provide a hostname and full path to a set of dump files. The host does not have
to be in the Greenplum Database array of hosts, but must be accessible from the Greenplum
master.

--redirect database_name

Specify the name of the database where the data is restored. Specify this option to
restore data to a database that is different than the database specified during back up. If
database_name does not exist, it is created.

--report-status-dir report_directory

Specifies the absolute path to the directory on the each Greenplum Database host (master
and segment hosts) where gpdbrestore writes report status files for a restore operation. If
report_directory does not exist or is not writable, gpdbrestore returns an error and stops.

If this option is not specified and the -u option is specified, report status files are written to
the location specified by the -u option if the -u location is writable. If the location specified by
-u option is not writable, the report status files are written to segment data directories.

--restore-stats [include | only]

Specify this option to restore database statistics that were backed up with the gpcrondump
utility option --dump-stats.

• The keyword include restores the statistics that were backed up in addition to performing
a restore. This is the default if no keyword is specified.

• The keyword only restores only the statistics that were backed up. No other database
objects or database data are restored.

If this option is specified with other options that include or exclude tables or schemas to
restore, the utility restores statistics only for the tables specified to be restored.

Management Utility Reference Utility Guide

56

If statistics would be restored for a table that does not exist in the database, the utility
displays a warning. The statistics are not restored.

-s database_name

Looks for latest set of dump files for the given database name in the segment data directories
db_dumps directory on the Greenplum Database array of hosts.

-S schema_name

Restore all the tables, views, indexes, functions, and sequences qualified by the specified
schema from the backup. The -S option can be specified multiple times. System catalog
schemas are not supported. The schema name must exist in the backup set of the database
being restored. To replace the data in the schema tables with the data from backup, you can
specify the --truncate option. The schema tables are truncated before the data is restored.

The -S option cannot be specified with the --change-schema option.

-t timestamp_key

The 14 digit timestamp key that uniquely identifies a backup set of data to restore. It is of the
form YYYYMMDDHHMMSS. Looks for dump files matching this timestamp key in the segment data
directories db_dumps directory on the Greenplum Database array of hosts.

-T schema.table_name

The name of a table to restore. The -T option can be specified multiple times. The named
table(s) must exist in the backup set of the database being restored. Existing tables are not
automatically truncated before data is restored from backup. To replace existing data in the
table from backup, you can specify the --truncate option.

Wildcard characters are not supported.

--table-file file_name

Specify a file file_name that contains a list of table names to restore. The file contains any
number of table names, listed one per line. See the -T option for information about restoring
specific tables.

--truncate

Truncate table data before restoring data to the table from the backup. If this option is not
specified, existing table data is not removed before data is restored to the table.

This option is supported only when restoring a set of tables with the option -S, -T or --
table-file. If a table to be restored does not exist in the database, the table is restored and
the utility returns a warning message stating that the table did not exist in the database.

This option is not supported with the -e option.

-u backup_directory

Specifies the absolute path to the directory containing the db_dumps directory on each host.
If not specified, defaults to the data directory of each instance to be backed up. Specify this
option if you specified a backup directory with the gpcrondump option -u when creating a
backup set.

If backup_directory is not writable, backup operation report status files are written to segment
data directories. You can specify a different location where report status files are written with
the --report-status-dir option.

Note: This option is not supported if --ddboost is specified.

-v | --verbose

Specifies verbose mode.

--version (show utility version)

Displays the version of this utility.

-? (help)

Management Utility Reference Utility Guide

57

Displays the online help.

Examples
Restore the sales database from the latest backup files generated by gpcrondump (assumes backup files
are in the segment data directories in db_dumps):

gpdbrestore -s sales

Restore a database from backup files that reside on an archive host outside the Greenplum Database
array (command issued on the Greenplum master host):

gpdbrestore -R archivehostname:/data_p1/db_dumps/20080214

Restore global objects only (roles and tablespaces):

gpdbrestore -G

Note: The -R option is not supported when restoring a backup set that includes incremental
backups.

If you restore from a backup set that contains an incremental backup, all the files in the backup set
must be available to gpdbrestore. For example, the following timestamp keys specify a backup set.
20120514054532 is the full backup and the others are incremental.

20120514054532
20120714095512
20120914081205
20121114064330
20130114051246

The following gbdbrestore command specifies the timestamp key 20121114064330. The incremental
backup with the timestamps 20120714095512 and 20120914081205 and the full backup must be available
to perform a restore.

gpdbrestore -t 20121114064330

The following gbdbrestore command uses the --noplan option to restore only the data that was
backed up during the incremental backup with the timestamp key 20121114064330. Data in the previous
incremental backups and the data in the full backup are not restored.

gpdbrestore -t 20121114064330 --noplan

This gpdbrestore command restores Greenplum Database data from the data managed by NetBackup
master server nbu_server1. The option -t 20130530090000 specifies the timestamp generated by
gpcrondump when the backup was created. The -e option specifies that the target database is dropped
before it is restored.

gpdbrestore -t 20130530090000 -e --netbackup-service-host=nbu_server1

See Also
gpcrondump

Management Utility Reference Utility Guide

58

gpdeletesystem
Deletes a Greenplum Database system that was initialized using gpinitsystem.

Synopsis
gpdeletesystem -d master_data_directory [-B parallel_processes]
 [-f] [-l logfile_directory] [-D]

gpdeletesystem -?

gpdeletesystem -v

Description
The gpdeletesystem utility will perform the following actions:

• Stop all postgres processes (the segment instances and master instance).

• Deletes all data directories.

Before running gpdeletesystem:

• Move any backup files out of the master and segment data directories.

• Make sure that Greenplum Database is running.

• If you are currently in a segment data directory, change directory to another location. The utility fails
with an error when run from within a segment data directory.

This utility will not uninstall the Greenplum Database software.

Options
-d data_directory

Required. The master host data directory.

-B parallel_processes

The number of segments to delete in parallel. If not specified, the utility will start up to 60
parallel processes depending on how many segment instances it needs to delete.

-f (force)

Force a delete even if backup files are found in the data directories. The default is to not
delete Greenplum Database instances if backup files are present.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-D (debug)

Sets logging level to debug.

-? (help)

Displays the online help.

-v (show utility version)

Displays the version, status, last updated date, and check sum of this utility.

Management Utility Reference Utility Guide

59

Examples
Delete a Greenplum Database system:

gpdeletesystem -d /gpdata/gp-1

Delete a Greenplum Database system even if backup files are present:

gpdeletesystem -d /gpdata/gp-1 -f

See Also
gpinitsystem

Management Utility Reference Utility Guide

60

gpexpand
Expands an existing Greenplum Database across new hosts in the array.

Synopsis
gpexpand [{-f|--hosts-file} hosts_file]
 | {-i|--input} input_file [-B batch_size] [-V|--novacuum]
 | {{-d | --duration} hh:mm:ss | {-e|--end} 'YYYY-MM-DD hh:mm:ss'}
 [-a|-analyze]
 [-n parallel_processes]
 | {-r|--rollback}
 | {-c|--clean}
 [-D database_name] [-v|--verbose] [-s|--silent]
 [{-t|--tardir} directory]
 [-S|--simple-progress]

gpexpand -? | -h | --help

gpexpand --version

Prerequisites
• You are logged in as the Greenplum Database superuser (gpadmin).

• The new segment hosts have been installed and configured as per the existing segment hosts. This
involves:

• Configuring the hardware and OS

• Installing the Greenplum software

• Creating the gpadmin user account

• Exchanging SSH keys.

• Enough disk space on your segment hosts to temporarily hold a copy of your largest table.

• When redistributing data, Greenplum Database must be running in production mode. Greenplum
Database cannot be restricted mode or in master mode. The gpstart options -R or -m cannot be
specified to start Greenplum Database.

Description
The gpexpand utility performs system expansion in two phases: segment initialization and then table
redistribution.

In the initialization phase, gpexpand runs with an input file that specifies data directories, dbid values,
and other characteristics of the new segments. You can create the input file manually, or by following the
prompts in an interactive interview.

If you choose to create the input file using the interactive interview, you can optionally specify a file
containing a list of expansion hosts. If your platform or command shell limits the length of the list of
hostnames that you can type when prompted in the interview, specifying the hosts with -f may be
mandatory.

In addition to initializing the segments, the initialization phase performs these actions:

• Creates an expansion schema to store the status of the expansion operation, including detailed status
for tables.

• Changes the distribution policy for all tables to DISTRIBUTED RANDOMLY. The original distribution
policies are later restored in the redistribution phase.

Management Utility Reference Utility Guide

61

To begin the redistribution phase, you must run gpexpand with either the -d (duration) or -e (end time)
options. Until the specified end time or duration is reached, the utility will redistribute tables in the
expansion schema. Each table is reorganized using ALTER TABLE commands to rebalance the tables
across new segments, and to set tables to their original distribution policy. If gpexpand completes the
reorganization of all tables before the specified duration, it displays a success message and ends.

Note: Data redistribution should be performed during low-use hours. Redistribution can divided into
batches over an extended period.

Options
-a | --analyze

Run ANALYZE to update the table statistics after expansion. The default is to not run ANALYZE.

-B batch_size

Batch size of remote commands to send to a given host before making a one-second pause.
Default is 16. Valid values are 1-128.

The gpexpand utility issues a number of setup commands that may exceed the host's
maximum threshold for authenticated connections as defined by MaxStartups in the SSH
daemon configuration. The one-second pause allows authentications to be completed before
gpexpand issues any more commands.

The default value does not normally need to be changed. However, it may be necessary to
reduce the maximum number of commands if gpexpand fails with connection errors such as
'ssh_exchange_identification: Connection closed by remote host.'

-c | --clean

Remove the expansion schema.

-d | --duration hh:mm:ss

Duration of the expansion session from beginning to end.

-D database_name

Specifies the database in which to create the expansion schema and tables. If this option
is not given, the setting for the environment variable PGDATABASE is used. The database
templates template1 and template0 cannot be used.

-e | --end 'YYYY-MM-DD hh:mm:ss'

Ending date and time for the expansion session.

-f | --hosts-file filename

Specifies the name of a file that contains a list of new hosts for system expansion. Each line
of the file must contain a single host name.

This file can contain hostnames with or without network interfaces specified. The gpexpand
utility handles either case, adding interface numbers to end of the hostname if the original
nodes are configured with multiple network interfaces.

Note: The Greenplum Database segment host naming convention is sdwN
where sdw is a prefix and N is an integer. For example, on a Greenplum
Database DCA system, segment host names would be sdw1, sdw2 and so on.
For hosts with multiple interfaces, the convention is to append a dash (-) and
number to the host name. For example, sdw1-1 and sdw1-2 are the two interface
names for host sdw1.

-i | --input input_file

Specifies the name of the expansion configuration file, which contains one line for each
segment to be added in the format of:

hostname:address:port:fselocation:dbid:content:preferred_role:replication_port

Management Utility Reference Utility Guide

62

If your system has filespaces, gpexpand will expect a filespace configuration file
(input_file_name.fs) to exist in the same directory as your expansion configuration file. The
filespace configuration file is in the format of:

filespaceOrder=filespace1_name:filespace2_name: ...
dbid:/path/for/filespace1:/path/for/filespace2: ...
dbid:/path/for/filespace1:/path/for/filespace2: ...
...

-n parallel_processes

The number of tables to redistribute simultaneously. Valid values are 1 - 96.

Each table redistribution process requires two database connections: one to alter the table,
and another to update the table's status in the expansion schema. Before increasing -n,
check the current value of the server configuration parameter max_connections and make
sure the maximum connection limit is not exceeded.

-r | --rollback

Roll back a failed expansion setup operation. If the rollback command fails, attempt again
using the -D option to specify the database that contains the expansion schema for the
operation that you want to roll back.

-s | --silent

Runs in silent mode. Does not prompt for confirmation to proceed on warnings.

-S | --simple-progress

If specified, the gpexpand utility records only the minimum progress information in the
Greenplum Database table gpexpand.expansion_progress. The utility does not record the
relation size information and status information in the table gpexpand.status_detail.

Specifying this option can improve performance by reducing the amount of progress
information written to the gpexpand tables.

[-t | --tardir] directory

The fully qualified path to a directory on segment hosts were the gpexpand utility copies
a temporary tar file. The file contains Greenplum Database files that are used to create
segment instances. The default directory is the user home directory.

-v | --verbose

Verbose debugging output. With this option, the utility will output all DDL and DML used to
expand the database.

--version

Display the utility's version number and exit.

-V | --novacuum

Do not vacuum catalog tables before creating schema copy.

-? | -h | --help

Displays the online help.

Examples
Run gpexpand with an input file to initialize new segments and create the expansion schema in the default
database:

$ gpexpand -i input_file

Run gpexpand for sixty hours maximum duration to redistribute tables to new segments:

$ gpexpand -d 60:00:00

Management Utility Reference Utility Guide

63

See Also
gpssh-exkeys

Management Utility Reference Utility Guide

64

gpfdist
Serves data files to or writes data files out from Greenplum Database segments.

Synopsis
gpfdist [-d directory] [-p http_port] [-l log_file] [-t timeout]
 [-S] [-w time] [-v | -V] [-s] [-m max_length]
 [--ssl certificate_path [--sslclean wait_time]]
 [-c config.yml]

gpfdist -? | --help

gpfdist --version

Description
gpfdist is Greenplum Database parallel file distribution program. It is used by readable external tables
and gpload to serve external table files to all Greenplum Database segments in parallel. It is used by
writable external tables to accept output streams from Greenplum Database segments in parallel and write
them out to a file.

In order for gpfdist to be used by an external table, the LOCATION clause of the external table definition
must specify the external table data using the gpfdist:// protocol (see the Greenplum Database
command CREATE EXTERNAL TABLE).

Note: If the --ssl option is specified to enable SSL security, create the external table with the
gpfdists:// protocol.

The benefit of using gpfdist is that you are guaranteed maximum parallelism while reading from or writing
to external tables, thereby offering the best performance as well as easier administration of external tables.

For readable external tables, gpfdist parses and serves data files evenly to all the segment instances in
the Greenplum Database system when users SELECT from the external table. For writable external tables,
gpfdist accepts parallel output streams from the segments when users INSERT into the external table,
and writes to an output file.

For readable external tables, if load files are compressed using gzip or bzip2 (have a .gz or .bz2 file
extension), gpfdist uncompresses the files automatically before loading provided that gunzip or bunzip2
is in your path.

Note: Currently, readable external tables do not support compression on Windows platforms, and
writable external tables do not support compression on any platforms.

Most likely, you will want to run gpfdist on your ETL machines rather than the hosts where Greenplum
Database is installed. To install gpfdist on another host, simply copy the utility over to that host and add
gpfdist to your $PATH.

When reading or writing data with the gpfdist or gpfdists protocol, Greenplum Database includes X-
GP-PROTO in the HTTP request header to indicate that the request is from Greenplum Database. The utility
rejects HTTP requests that do not include X-GP-PROTO in the request header.

Note: When using IPv6, always enclose the numeric IP address in brackets.

You can also run gpfdist as a Windows Service. See Running gpfdist as a Windows Service for more
details.

Options
-d directory

Management Utility Reference Utility Guide

65

The directory from which gpfdist will serve files for readable external tables or create output
files for writable external tables. If not specified, defaults to the current directory.

-l log_file

The fully qualified path and log file name where standard output messages are to be logged.

-p http_port

The HTTP port on which gpfdist will serve files. Defaults to 8080.

-t timeout

Sets the time allowed for Greenplum Database to establish a connection to a gpfdist
process. Default is 5 seconds. Allowed values are 2 to 7200 seconds (2 hours). May need to
be increased on systems with a lot of network traffic.

-m max_length

Sets the maximum allowed data row length in bytes. Default is 32768. Should be used when
user data includes very wide rows (or when line too long error message occurs). Should
not be used otherwise as it increases resource allocation. Valid range is 32K to 256MB. (The
upper limit is 1MB on Windows systems.)

Note: Memory issues might occur if you specify a large maximum row length
and run a large number of gpfdist concurrent connections. For example,
setting this value to the maximum of 256MB with 96 concurrent gpfdist
processes requires approximately 24GB of memory ((96 + 1) x 246MB).

-s

Enables simplified logging. When this option is specified, only messages with WARN level and
higher are written to the gpfdist log file. INFO level messages are not written to the log file. If
this option is not specified, all gpfdist messages are written to the log file.

You can specify this option to reduce the information written to the log file.

-S (use O_SYNC)

Opens the file for synchronous I/O with the O_SYNC flag. Any writes to the resulting file
descriptor block gpfdist until the data is physically written to the underlying hardware.

-w time

Sets the number of seconds that Greenplum Database delays before closing a target file
such as a named pipe. The default value is 0, no delay. The maximum value is 7200 seconds
(2 hours).

For a Greenplum Database with multiple segments, there might be a delay between
segments when writing data from different segments to the file. You can specify a time to wait
before Greenplum Database closes the file to ensure all the data is written to the file.

--ssl certificate_path

Adds SSL encryption to data transferred with gpfdist. After executing gpfdist with the
--ssl certificate_path option, the only way to load data from this file server is with
the gpfdist:// protocol. For information on the gpfdist:// protocol, see "Loading and
Unloading Data" in the Greenplum Database Administrator Guide.

The location specified in certificate_path must contain the following files:

• The server certificate file, server.crt

• The server private key file, server.key

• The trusted certificate authorities, root.crt

The root directory (/) cannot be specified as certificate_path.

--sslclean wait_time

Management Utility Reference Utility Guide

66

When the utility is run with the --ssl option, sets the number of seconds that the utility
delays before closing an SSL session and cleaning up the SSL resources after it completes
writing data to or from a Greenplum Database segment. The default value is 0, no delay. The
maximum value is 300 seconds. If the delay is increased, the transfer speed decreases.

In some cases, this error might occur when copying large amounts of data: gpfdist server
closed connection. To avoid the error, you can add a delay, for example --sslclean 5.

-c config.yaml

Specifies rules that gpfdist uses to select a transform to apply when loading or extracting
data. The gpfdist configuration file is a YAML 1.1 document.

For information about the file format, see Configuration File Format in the Greenplum
Database Administrator Guide. For information about configuring data transformation with
gpfdist, see Transforming XML Data in the Greenplum Database Administrator Guide.

This option is not available on Windows platforms.

-v (verbose)

Verbose mode shows progress and status messages.

-V (very verbose)

Verbose mode shows all output messages generated by this utility.

-? (help)

Displays the online help.

--version

Displays the version of this utility.

Running gpfdist as a Windows Service
Greenplum Database Loaders allow gpfdist to run as a Windows Service.

Follow the instructions below to download, register and activate gpfdist as a service:

1. Update your Greenplum Database Loader package to the latest version. This package is available from
Pivotal Network.

2. Register gpfdist as a Windows service:

a. Open a Windows command window
b. Run the following command:

sc create gpfdist binpath= "path_to_gpfdist.exe -p 8081 -d External\load\files
\path -l Log\file\path"

You can create multiple instances of gpfdist by running the same command again, with a unique
name and port number for each instance:

sc create gpfdistN binpath= "path_to_gpfdist.exe -p 8082 -d External\load\files
\path -l Log\file\path"

3. Activate the gpfdist service:

a. Open the Windows Control Panel and select Administrative Tools > Services.
b. Highlight then right-click on the gpfdist service in the list of services.
c. Select Properties from the right-click menu, the Service Properties window opens.

Note that you can also stop this service from the Service Properties window.
d. Optional: Change the Startup Type to Automatic (after a system restart, this service will be

running), then under Service status, click Start.
e. Click OK.

https://network.pivotal.io

Management Utility Reference Utility Guide

67

Repeat the above steps for each instance of gpfdist that you created.

Examples
To serve files from a specified directory using port 8081 (and start gpfdist in the background):

gpfdist -d /var/load_files -p 8081 &

To start gpfdist in the background and redirect output and errors to a log file:

gpfdist -d /var/load_files -p 8081 -l /home/gpadmin/log &

To stop gpfdist when it is running in the background:

--First find its process id:

ps ax | grep gpfdist

--Then kill the process, for example:

kill 3456

See Also
gpload, CREATE EXTERNAL TABLE in the Greenplum Database Reference Guide

Management Utility Reference Utility Guide

68

gpfilespace
Creates a filespace using a configuration file that defines per-segment file system locations. Filespaces
describe the physical file system resources to be used by a tablespace.

Synopsis
gpfilespace [connection_option ...] [-l logfile_directory]
 [-o output_file_name]

gpfilespace [connection_option ...] [-l logfile_directory]
 [-c fs_config_file]

gpfilespace --movetempfilespace {filespace_name | default}

gpfilespace --movetransfilespace {filespace_name | default}

gpfilespace --showtempfilespace

gpfilespace --showtransfilespace

gpfilespace -v

gpfilespace -?

Description
A tablespace requires a file system location to store its database files. In Greenplum Database, the master
and each segment (primary and mirror) needs its own distinct storage location. This collection of file
system locations for all components in a Greenplum system is referred to as a filespace. Once a filespace
is defined, it can be used by one or more tablespaces.

When used with the -o option, the gpfilespace utility looks up your system configuration information in
the Greenplum Database catalog tables and prompts you for the appropriate file system locations needed
to create the filespace. It then outputs a configuration file that can be used to create a filespace. If a file
name is not specified, a gpfilespace_config_# file will be created in the current directory by default.

Once you have a configuration file, you can run gpfilespace with the -c option to create the filespace in
Greenplum Database.

You will need to create a filespace before you can use the gpfilespace --movetempfilespace or --
movetransfilespace option to move your temporary or transaction files to the new location.

Use either gpfilespace --showtempfilespace or --showtransfilespace options to show the name of
the filespace currently associated with temporary or transaction files.

Note: If segments are down due to a power or nic failure, you may see inconsistencies during
filespace creation. You may not be able to bring up the Greenplum Database.

Options
-c | --config fs_config_file

A configuration file containing:

• An initial line denoting the new filespace name. For example:

filespace:myfs

• One line each for the master, the primary segments, and the mirror segments. A line
describes a file system location that a particular segment database instance should use

Management Utility Reference Utility Guide

69

as its data directory location to store database files associated with a tablespace. Each
line is in the format of:

hostname:dbid:/filesystem_dir/seg_datadir_name

-l | --logdir logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-o | --output output_file_name

The directory location and file name to output the generated filespace configuration file.
You will be prompted to enter a name for the filespace, a master file system location, the
primary segment file system locations, and the mirror segment file system locations. For
example, if your configuration has 2 primary and 2 mirror segments per host, you will be
prompted for a total of 5 locations (including the master). The file system locations must exist
on all hosts in your system prior to running the gpfilespace utility. The utility will designate
segment-specific data directories within the location(s) you specify, so it is possible to use the
same location for multiple segments. However, primaries and mirrors cannot use the same
location. After the utility creates the configuration file, you can manually edit the file to make
any required changes to the filespace layout before creating the filespace in Greenplum
Database.

--movetempfilespace {filespace_name | default}

Moves temporary files to a new filespace or to the default location.

--movetransfilespace {filespace_name | default}

Moves transaction files to a new filespace or to the default location.

--showtempfilespace

Show the name of the filespace currently associated with temporary files. This option
checks that all primary and mirror segments, master and master standby are using the
same filespace or temporary files.You will receive a warning message and an email if any
inconsistencies exist.

--showtransfilespace

Show the name of the filespace currently associated with transaction files. This option
checks that all primary and mirror segments, master and master standby are using the
same filespace or transaction files.You will receive a warning message and an email if any
inconsistencies exist.

-v | --version (show utility version)

Displays the version of this utility.

-? | --help (help)

Displays the utility usage and syntax.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username superuser_name

The database superuser role name to connect as. If not specified, reads from the
environment variable PGUSER or defaults to the current system user name. Only database
superusers are allowed to create filespaces.

-W | --password

Management Utility Reference Utility Guide

70

Force a password prompt.

Examples
Create a filespace configuration file. You will be prompted to enter a name for the filespace, a master file
system location, the primary segment file system locations, and the mirror segment file system locations.
For example, if your configuration has 2 primary and 2 mirror segments per host, you will be prompted for
a total of 5 locations (including the master). The file system locations must exist on all hosts in your system
prior to running the gpfilespace utility:

$ gpfilespace -o .
Enter a name for this filespace
> fastdisk

Checking your configuration:

Your system has 2 hosts with 2 primary and 2 mirror segments
per host.

Configuring hosts: [sdw1, sdw2]

Please specify 2 locations for the primary segments, one per line:
primary location 1> /gp_pri_filespc
primary location 2> /gp_pri_filespc

Please specify 2 locations for the mirror segments, one per line:
mirror location 1> /gp_mir_filespc
mirror location 2> /gp_mir_filespc

Enter a file system location for the master:
master location> /gp_master_filespc

Example filespace configuration file:

filespace:fastdisk
mdw:1:/gp_master_filespc/gp-1
sdw1:2:/gp_pri_filespc/gp0
sdw1:3:/gp_mir_filespc/gp1
sdw2:4:/gp_mir_filespc/gp0
sdw2:5:/gp_pri_filespc/gp1

Execute the configuration file to create the filespace in Greenplum Database:

$ gpfilespace -c gpfilespace_config_1

See Also
CREATE TABLESPACE in the Greenplum Database Reference Guide

Management Utility Reference Utility Guide

71

gpinitstandby
Adds and/or initializes a standby master host for a Greenplum Database system.

Synopsis
gpinitstandby { -s standby_hostname [-P port]
 [-F list_of_filespaces] | -r | -n }
 [-a] [-q] [-D] [-l logfile_directory]

gpinitstandby -v

gpinitstandby -?

Description
The gpinitstandby utility adds a backup, standby master host to your Greenplum Database system. If
your system has an existing standby master host configured, use the -r option to remove it before adding
the new standby master host.

Before running this utility, make sure that the Greenplum Database software is installed on the standby
master host and that you have exchanged SSH keys between the hosts. It is recommended that the
master port is set to the same port number on the master host and the backup master host.

This utility should be run on the currently active primary master host. See the Greenplum Database
Installation Guide for instructions.

The utility performs the following steps:

• Updates the Greenplum Database system catalog to remove the existing standby master host
information (if the -r option is supplied)

• Updates the Greenplum Database system catalog to add the new standby master host information

• Edits the pg_hba.conf file of the Greenplum Database master to allow access from the newly added
standby master.

• Sets up the standby master instance on the alternate master host

• Starts the synchronization process

A backup, standby master host serves as a 'warm standby' in the event of the primary master host
becoming non-operational. The standby master is kept up to date by transaction log replication processes
(the walsender and walreceiver), which run on the primary master and standby master hosts and
keep the data between the primary and standby master hosts synchronized. If the primary master fails,
the log replication process is shut down, and the standby master can be activated in its place by using
the gpactivatestandby utility. Upon activation of the standby master, the replicated logs are used to
reconstruct the state of the master host at the time of the last successfully committed transaction.

The activated standby master effectively becomes the Greenplum Database master, accepting client
connections on the master port and performing normal master operations such as SQL command
processing and workload management.

Important: If the gpinitstandby utility previously failed to initialize the standby master, you must
delete the files in the standby master data directory before running gpinitstandby again. The
standby master data directory is not cleaned up after an initialization failure because it contains log
files that can help in determining the reason for the failure.

If an initialization failure occurs, a summary report file is generated in the standby host directory /
tmp. The report file lists the directories on standby host that require clean up.

Management Utility Reference Utility Guide

72

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-D (debug)

Sets logging level to debug.

-F list_of_filespaces

A list of filespace names and the associated locations. Each filespace name and its location
is separated by a colon. If there is more than one file space name, each pair (name and
location) is separated by a comma. For example:

filespace1_name:fs1_location,filespace2_name:fs2_location

If this option is not specified, gpinitstandby prompts the user for the filespace names and
locations.

If the list is not formatted correctly or number of filespaces do not match the number of
filespaces already created in the system, gpinitstandby returns an error.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-n (restart standby master)

Specify this option to start a Greenplum Database standby master that has been configured
but has stopped for some reason.

-P port

This option specifies the port that is used by the Greenplum Database standby master. The
default is the same port used by the active Greenplum Database master.

If the Greenplum Database standby master is on the same host as the active master, the
ports must be different. If the ports are the same for the active and standby master and the
host is the same, the utility returns an error.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

-r (remove standby master)

Removes the currently configured standby master host from your Greenplum Database
system.

-s standby_hostname

The host name of the standby master host.

-v (show utility version)

Displays the version, status, last updated date, and check sum of this utility.

-? (help)

Displays the online help.

Examples
Add a standby master host to your Greenplum Database system and start the synchronization process:

gpinitstandby -s host09

Start an existing standby master host and synchronize the data with the current primary master host:

gpinitstandby -n

Management Utility Reference Utility Guide

73

Note: Do not specify the -n and -s options in the same command.

Add a standby master host to your Greenplum Database system specifying a different port:

gpinitstandby -s myhost -P 2222

If you specify the same host name as the active Greenplum Database master, the installed Greenplum
Database software that is used as a standby master must be in a separate location from the active
Greenplum Database master. Also, filespace locations that are used by the standby master must be
different than the filespace locations used by the active Greenplum Database master.

Remove the existing standby master from your Greenplum system configuration:

gpinitstandby -r

See Also
gpinitsystem, gpaddmirrors, gpactivatestandby

Management Utility Reference Utility Guide

74

gpinitsystem
Initializes a Greenplum Database system using configuration parameters specified in the
gpinitsystem_config file.

Synopsis
gpinitsystem -c cluster_configuration_file
 [-h hostfile_gpinitsystem]
 [-B parallel_processes]
 [-p postgresql_conf_param_file]
 [-s standby_master_host [-P standby_master_port]
 [-F standby_master_filespaces]]
 [-m number | --max_connections=number]
 [-b size | --shared_buffers=size]
 [-n locale | --locale=locale] [--lc-collate=locale]
 [--lc-ctype=locale] [--lc-messages=locale]
 [--lc-monetary=locale] [--lc-numeric=locale]
 [--lc-time=locale]
 [-e password | --su_password=password]
 [-S] [-i] [-a] [-q] [-l logfile_directory] [-D]
 [-I input_configuration_file]
 [-O output_configuration_file]

gpinitsystem -v

gpinitsystem -h

Description
The gpinitsystem utility creates a Greenplum Database instance or writes an input configuration file
using the values defined in a cluster configuration file and any command-line options that you provide. See
Initialization Configuration File Format for more information about the configuration file. Before running this
utility, make sure that you have installed the Greenplum Database software on all the hosts in the array.

With the -O output_configuration_file option, gpinitsystem does not create a new database
instance but instead writes all provided configuration information to the specified output file. This file uses
the QD_PRIMARY_ARRAY and PRIMARY_ARRAY parameters to define each member using its hostname,
port, data directory, segment prefix, segment ID, and content ID. Details of the array configuration can be
modified as necessary to match values available in a Greenplum Database backup, or can simply be used
to recreate the same cluster configuration at a later time. Configuration files that use QD_PRIMARY_ARRAY
and PRIMARY_ARRAY must be passed into gpinitsystem using the -I input_configuration_file
option. See Initialization Configuration File Format for more information.

In a Greenplum Database DBMS, each database instance (the master and all segments) must be
initialized across all of the hosts in the system in such a way that they can all work together as a unified
DBMS. The gpinitsystem utility takes care of initializing the Greenplum master and each segment
instance, and configuring the system as a whole.

Before running gpinitsystem, you must set the $GPHOME environment variable to point to the location
of your Greenplum Database installation on the master host and exchange SSH keys between all host
addresses in the array using gpssh-exkeys.

This utility performs the following tasks:

• Verifies that the parameters in the configuration file are correct.

• Ensures that a connection can be established to each host address. If a host address cannot be
reached, the utility will exit.

• Verifies the locale settings.

Management Utility Reference Utility Guide

75

• Displays the configuration that will be used and prompts the user for confirmation.

• Initializes the master instance.

• Initializes the standby master instance (if specified).

• Initializes the primary segment instances.

• Initializes the mirror segment instances (if mirroring is configured).

• Configures the Greenplum Database system and checks for errors.

• Starts the Greenplum Database system.

Options
-a

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to create in parallel. If not specified, the utility will start up to 4
parallel processes at a time.

-c cluster_configuration_file

Required. The full path and filename of the configuration file, which contains all of the
defined parameters to configure and initialize a new Greenplum Database system. See
Initialization Configuration File Format for a description of this file. You must provide either
the -c cluster_configuration_file option or the -I input_configuration_file option
to gpinitsystem.

-D

Sets log output level to debug.

-h hostfile_gpinitsystem

Optional. The full path and filename of a file that contains the host addresses of your
segment hosts. If not specified on the command line, you can specify the host file using the
MACHINE_LIST_FILE parameter in the gpinitsystem_config file.

-I input_configuration_file

The full path and filename of an input configuration file, which defines the Greenplum
Database members and segments using the QD_PRIMARY_ARRAY and PRIMARY_ARRAY
parameters. The input configuration file is typically created by using gpinitsystem
with the -O output_configuration_file option. You must provide either the -c
cluster_configuration_file option or the -I input_configuration_file option to
gpinitsystem.

--locale=locale | -n locale

Sets the default locale used by Greenplum Database. If not specified, the LC_ALL,
LC_COLLATE, or LANG environment variable of the master host determines the locale. If
these are not set, the default locale is C (POSIX). A locale identifier consists of a language
identifier and a region identifier, and optionally a character set encoding. For example, sv_SE
is Swedish as spoken in Sweden, en_US is U.S. English, and fr_CA is French Canadian.
If more than one character set can be useful for a locale, then the specifications look like
this: en_US.UTF-8 (locale specification and character set encoding). On most systems, the
command locale will show the locale environment settings and locale -a will show a list of
all available locales.

--lc-collate=locale

Similar to --locale, but sets the locale used for collation (sorting data). The sort order
cannot be changed after Greenplum Database is initialized, so it is important to choose a
collation locale that is compatible with the character set encodings that you plan to use for
your data. There is a special collation name of C or POSIX (byte-order sorting as opposed to
dictionary-order sorting). The C collation can be used with any character encoding.

Management Utility Reference Utility Guide

76

--lc-ctype=locale

Similar to --locale, but sets the locale used for character classification (what character
sequences are valid and how they are interpreted). This cannot be changed after Greenplum
Database is initialized, so it is important to choose a character classification locale that is
compatible with the data you plan to store in Greenplum Database.

--lc-messages=locale

Similar to --locale, but sets the locale used for messages output by Greenplum Database.
The current version of Greenplum Database does not support multiple locales for output
messages (all messages are in English), so changing this setting will not have any effect.

--lc-monetary=locale

Similar to --locale, but sets the locale used for formatting currency amounts.

--lc-numeric=locale

Similar to --locale, but sets the locale used for formatting numbers.

--lc-time=locale

Similar to --locale, but sets the locale used for formatting dates and times.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

--max_connections=number | -m number

Sets the maximum number of client connections allowed to the master. The default is 250.

-O output_configuration_file

When used with the -O option, gpinitsystem does not create a new Greenplum Database
cluster but instead writes the supplied cluster configuration information to the specified
output_configuration_file. This file defines Greenplum Database members and
segments using the QD_PRIMARY_ARRAY, PRIMARY_ARRAY, and MIRROR_ARRAY parameters,
and can be later used with -I input_configuration_file to initialize a new cluster.

-p postgresql_conf_param_file

Optional. The name of a file that contains postgresql.conf parameter settings that you
want to set for Greenplum Database. These settings will be used when the individual master
and segment instances are initialized. You can also set parameters after initialization using
the gpconfig utility.

-q

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

--shared_buffers=size | -b size

Sets the amount of memory a Greenplum server instance uses for shared memory buffers.
You can specify sizing in kilobytes (kB), megabytes (MB) or gigabytes (GB). The default is
125MB.

-s standby_master_host

Optional. If you wish to configure a backup master host, specify the host name using this
option. The Greenplum Database software must already be installed and configured on this
host.

-P standby_master_port

Optional. If you configure a standby master host, specify its port number using this option.
The Greenplum Database software must already be installed and configured on this host.

-F standby_master_filespaces

Optional. If you configure a standby master host, specify a list of filespace names and the
associated locations using this option. Each filespace name and its location is separated by a

Management Utility Reference Utility Guide

77

colon. If there is more than one file space name, each pair (name and location) is separated
by a comma. For example:

filespace1_name:fs1_location,filespace2_name:fs2_location

If this option is not specified, gpinitstandby prompts the user for the filespace names and
locations.

If the list is not formatted correctly or number of filespaces do not match the number of
filespaces already created in the system, gpinitstandby returns an error.

--su_password=superuser_password | -e superuser_password

Use this option to specify the password to set for the Greenplum Database superuser
account (such as gpadmin). If this option is not specified, the default password gparray is
assigned to the superuser account. You can use the ALTER ROLE command to change the
password at a later time.

Recommended security best practices:

• Do not use the default password option for production environments.

• Change the password immediately after installation.

-S

If mirroring parameters are specified, spreads the mirror segments across the available
hosts. The default is to group the set of mirror segments together on an alternate host from
their primary segment set. Mirror spreading places each mirror on a different host within the
Greenplum Database array. Spreading is only allowed if the number of hosts is greater than
the number of segment instances.

-v

Displays the version of this utility.

-h

Displays the online help.

Initialization Configuration File Format
gpinitsystem requires a cluster configuration file with the following parameters defined. An
example initialization configuration file can be found in $GPHOME/docs/cli_help/gpconfigs/
gpinitsystem_config.

To avoid port conflicts between Greenplum Database and other applications, the Greenplum
Database port numbers should not be in the range specified by the operating system parameter
net.ipv4.ip_local_port_range. For example, if net.ipv4.ip_local_port_range = 10000 65535,
you could set Greenplum Database base port numbers to these values.

PORT_BASE = 6000
MIRROR_PORT_BASE = 7000
REPLICATION_PORT_BASE = 8000
MIRROR_REPLICATION_PORT_BASE = 9000

ARRAY_NAME

Required. A name for the array you are configuring. You can use any name you like. Enclose
the name in quotes if the name contains spaces.

MACHINE_LIST_FILE

Optional. Can be used in place of the -h option. This specifies the file that contains the
list of segment host address names that comprise the Greenplum Database system. The
master host is assumed to be the host from which you are running the utility and should not
be included in this file. If your segment hosts have multiple network interfaces, then this file
would include all addresses for the host. Give the absolute path to the file.

Management Utility Reference Utility Guide

78

SEG_PREFIX

Required. This specifies a prefix that will be used to name the data directories on the
master and segment instances. The naming convention for data directories in a Greenplum
Database system is SEG_PREFIXnumber where number starts with 0 for segment instances
(the master is always -1). So for example, if you choose the prefix gpseg, your master
instance data directory would be named gpseg-1, and the segment instances would be
named gpseg0, gpseg1, gpseg2, gpseg3, and so on.

PORT_BASE

Required. This specifies the base number by which primary segment port numbers
are calculated. The first primary segment port on a host is set as PORT_BASE, and then
incremented by one for each additional primary segment on that host. Valid values range
from 1 through 65535.

DATA_DIRECTORY

Required. This specifies the data storage location(s) where the utility will create the primary
segment data directories. The number of locations in the list dictate the number of primary
segments that will get created per physical host (if multiple addresses for a host are listed
in the host file, the number of segments will be spread evenly across the specified interface
addresses). It is OK to list the same data storage area multiple times if you want your data
directories created in the same location. The user who runs gpinitsystem (for example,
the gpadmin user) must have permission to write to these directories. For example, this will
create six primary segments per host:

declare -a DATA_DIRECTORY=(/data1/primary /data1/primary
/data1/primary /data2/primary /data2/primary /data2/primary)

MASTER_HOSTNAME

Required. The host name of the master instance. This host name must exactly match the
configured host name of the machine (run the hostname command to determine the correct
hostname).

MASTER_DIRECTORY

Required. This specifies the location where the data directory will be created on the master
host. You must make sure that the user who runs gpinitsystem (for example, the gpadmin
user) has permissions to write to this directory.

MASTER_PORT

Required. The port number for the master instance. This is the port number that users and
client connections will use when accessing the Greenplum Database system.

TRUSTED_SHELL

Required. The shell the gpinitsystem utility uses to execute commands on remote hosts.
Allowed values are ssh. You must set up your trusted host environment before running the
gpinitsystem utility (you can use gpssh-exkeys to do this).

CHECK_POINT_SEGMENTS

Required. Maximum distance between automatic write ahead log (WAL) checkpoints,
in log file segments (each segment is normally 16 megabytes). This will set the
checkpoint_segments parameter in the postgresql.conf file for each segment instance in
the Greenplum Database system.

ENCODING

Required. The character set encoding to use. This character set must be compatible with the
--locale settings used, especially --lc-collate and --lc-ctype. Greenplum Database
supports the same character sets as PostgreSQL.

DATABASE_NAME

Management Utility Reference Utility Guide

79

Optional. The name of a Greenplum Database database to create after the system is
initialized. You can always create a database later using the CREATE DATABASE command or
the createdb utility.

MIRROR_PORT_BASE

Optional. This specifies the base number by which mirror segment port numbers are
calculated. The first mirror segment port on a host is set as MIRROR_PORT_BASE, and then
incremented by one for each additional mirror segment on that host. Valid values range from
1 through 65535 and cannot conflict with the ports calculated by PORT_BASE.

REPLICATION_PORT_BASE

Optional. This specifies the base number by which the port numbers for the primary
file replication process are calculated. The first replication port on a host is set as
REPLICATION_PORT_BASE, and then incremented by one for each additional primary segment
on that host. Valid values range from 1 through 65535 and cannot conflict with the ports
calculated by PORT_BASE or MIRROR_PORT_BASE.

MIRROR_REPLICATION_PORT_BASE

Optional. This specifies the base number by which the port numbers for the mirror file
replication process are calculated. The first mirror replication port on a host is set as
MIRROR_REPLICATION_PORT_BASE, and then incremented by one for each additional mirror
segment on that host. Valid values range from 1 through 65535 and cannot conflict with the
ports calculated by PORT_BASE, MIRROR_PORT_BASE, or REPLICATION_PORT_BASE.

MIRROR_DATA_DIRECTORY

Optional. This specifies the data storage location(s) where the utility will create the mirror
segment data directories. There must be the same number of data directories declared
for mirror segment instances as for primary segment instances (see the DATA_DIRECTORY
parameter). The user who runs gpinitsystem (for example, the gpadmin user) must have
permission to write to these directories. For example:

declare -a MIRROR_DATA_DIRECTORY=(/data1/mirror
/data1/mirror /data1/mirror /data2/mirror /data2/mirror
/data2/mirror)

QD_PRIMARY_ARRAY, PRIMARY_ARRAY, MIRROR_ARRAY

These parameters can only be provided using an input configuration file, with
the gpinitsystem -I input_configuration_file option. QD_PRIMARY_ARRAY,
PRIMARY_ARRAY, and MIRROR_ARRAY define the Greenplum Database master host and the
primary and mirror instances on the segment hosts, respectively, using the format:

host~port~data_directory/seg_prefix<segment_id>~dbid~content_id~replication_port

The Greenplum Database master always uses the value -1 for the segment ID and content
ID. For example:

QD_PRIMARY_ARRAY=127.0.0.1~5432~/gpmaster/gpsne-1~1~-1~0
declare -a PRIMARY_ARRAY=(
127.0.0.1~40000~/gpdata1/gpsne0~2~0~6000
127.0.0.1~40001~/gpdata2/gpsne1~3~1~6001
)
declare -a MIRROR_ARRAY=(
127.0.0.1~50000~/gpmirror1/gpsne0~4~0~51000
127.0.0.1~50001~/gpmirror2/gpsne1~5~1~51001
)

You can use the gpinitsystem -O output_configuration_file to populate
QD_PRIMARY_ARRAY, PRIMARY_ARRAY, MIRROR_ARRAYusing the hosts, data directories,
segment prefix, and base port values that you provide to the command. For recovery

Management Utility Reference Utility Guide

80

purposes, you can edit the segment and content IDs to match the values of an existing
Greenplum Database backup.

Examples
Initialize a Greenplum Database array by supplying a cluster configuration file and a segment host address
file, and set up a spread mirroring (-S) configuration:

$ gpinitsystem -c gpinitsystem_config -h
hostfile_gpinitsystem -S

Initialize a Greenplum Database array and set the superuser remote password:

$ gpinitsystem -c gpinitsystem_config -h
hostfile_gpinitsystem --su-password=mypassword

Initialize a Greenplum Database array with an optional standby master host:

$ gpinitsystem -c gpinitsystem_config -h
hostfile_gpinitsystem -s host09

Instead of initializing a Greenplum Database array, write the provided configuration to an output file. The
output file uses the QD_PRIMARY_ARRAY and PRIMARY_ARRAY parameters to define master and segment
hosts:

$ gpinitsystem -c gpinitsystem_config -h
hostfile_gpinitsystem -S -O cluster_init.config

Initialize a Greenplum Database using an input configuration file (a file that defines the Greenplum
Database array using QD_PRIMARY_ARRAY and PRIMARY_ARRAY parameters:

$ gpinitsystem -I cluster_init.config

See Also
gpssh-exkeys, gpdeletesystem

Management Utility Reference Utility Guide

81

gpload
Runs a load job as defined in a YAML formatted control file.

Synopsis
gpload -f control_file [-l log_file] [-h hostname] [-p port]
 [-U username] [-d database] [-W] [--gpfdist_timeout seconds]
 [--no_auto_trans] [[-v | -V] [-q]] [-D]

gpload -?

gpload --version

Prerequisites
The client machine where gpload is executed must have the following:

• Python 2.6.2 or later, pygresql (the Python interface to PostgreSQL), and pyyaml. Note that Python
and the required Python libraries are included with the Greenplum Database server installation, so if
you have Greenplum Database installed on the machine where gpload is running, you do not need a
separate Python installation.

Note: Greenplum Database Loaders for Windows supports only Python 2.5 (available from
https://www.python.org).

• The gpfdist parallel file distribution program installed and in your $PATH. This program is located in
$GPHOME/bin of your Greenplum Database server installation.

• Network access to and from all hosts in your Greenplum Database array (master and segments).

• Network access to and from the hosts where the data to be loaded resides (ETL servers).

Description
gpload is a data loading utility that acts as an interface to the Greenplum Database external table parallel
loading feature. Using a load specification defined in a YAML formatted control file, gpload executes
a load by invoking the Greenplum Database parallel file server (gpfdist), creating an external table
definition based on the source data defined, and executing an INSERT, UPDATE or MERGE operation to load
the source data into the target table in the database.

The operation, including any SQL commands specified in the SQL collection of the YAML control file (see
Control File Format), are performed as a single transaction to prevent inconsistent data when performing
multiple, simultaneous load operations on a target table.

Options
-f control_file

Required. A YAML file that contains the load specification details. See Control File Format.

--gpfdist_timeout seconds

Sets the timeout for the gpfdist parallel file distribution program to send a response. Enter
a value from 0 to 30 seconds (entering "0" to disables timeouts). Note that you might need to
increase this value when operating on high-traffic networks.

-l log_file

Specifies where to write the log file. Defaults to ~/gpAdminLogs/gpload_YYYYMMDD. For more
information about the log file, see Log File Format.

--no_auto_trans

https://www.python.org

Management Utility Reference Utility Guide

82

Specify --no_auto_trans to disable processing the load operation as a single transaction if
you are performing a single load operation on the target table.

By default, gpload processes each load operation as a single transaction to prevent
inconsistent data when performing multiple, simultaneous operations on a target table.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

-D (debug mode)

Check for error conditions, but do not execute the load.

-v (verbose mode)

Show verbose output of the load steps as they are executed.

-V (very verbose mode)

Shows very verbose output.

-? (show help)

Show help, then exit.

--version

Show the version of this utility, then exit.

Connection Options
-d database

The database to load into. If not specified, reads from the load control file, the environment
variable $PGDATABASE or defaults to the current system user name.

-h hostname

Specifies the host name of the machine on which the Greenplum Database master database
server is running. If not specified, reads from the load control file, the environment variable
$PGHOST or defaults to localhost.

-p port

Specifies the TCP port on which the Greenplum Database master database server is
listening for connections. If not specified, reads from the load control file, the environment
variable $PGPORT or defaults to 5432.

-U username

The database role name to connect as. If not specified, reads from the load control file, the
environment variable $PGUSER or defaults to the current system user name.

-W (force password prompt)

Force a password prompt. If not specified, reads the password from the environment variable
$PGPASSWORD or from a password file specified by $PGPASSFILE or in ~/.pgpass. If these are
not set, then gpload will prompt for a password even if -W is not supplied.

Control File Format
The gpload control file uses the YAML 1.1 document format and then implements its own schema for
defining the various steps of a Greenplum Database load operation. The control file must be a valid YAML
document.

The gpload program processes the control file document in order and uses indentation (spaces) to
determine the document hierarchy and the relationships of the sections to one another. The use of white
space is significant. White space should not be used simply for formatting purposes, and tabs should not
be used at all.

http://yaml.org/spec/1.1/

Management Utility Reference Utility Guide

83

The basic structure of a load control file is:

VERSION: 1.0.0.1
DATABASE: db_name
USER: db_username
HOST: master_hostname
PORT: master_port
GPLOAD:
 INPUT:
 - SOURCE:
 LOCAL_HOSTNAME:
 - hostname_or_ip
 PORT: http_port
 | PORT_RANGE: [start_port_range, end_port_range]
 FILE:
 - /path/to/input_file
 SSL: true | false
 CERTIFICATES_PATH: /path/to/certificates
 SSLCLEAN: integer
 - FULLY_QUALIFIED_DOMAIN_NAME: true | false
 - COLUMNS:
 - field_name: data_type
 - TRANSFORM: 'transformation'
 - TRANSFORM_CONFIG: 'configuration-file-path'
 - MAX_LINE_LENGTH: integer
 - FORMAT: text | csv
 - DELIMITER: 'delimiter_character'
 - ESCAPE: 'escape_character' | 'OFF'
 - NULL_AS: 'null_string'
 - FORCE_NOT_NULL: true | false
 - QUOTE: 'csv_quote_character'
 - HEADER: true | false
 - ENCODING: database_encoding
 - ERROR_LIMIT: integer
 - LOG_ERRORS: true | false
 - ERROR_TABLE: schema.table_name
 EXTERNAL:
 - SCHEMA: schema | '%'
 OUTPUT:
 - TABLE: schema.table_name
 - MODE: insert | update | merge
 - MATCH_COLUMNS:
 - target_column_name
 - UPDATE_COLUMNS:
 - target_column_name
 - UPDATE_CONDITION: 'boolean_condition'
 - MAPPING:
 target_column_name: source_column_name | 'expression'
 PRELOAD:
 - TRUNCATE: true | false
 - REUSE_TABLES: true | false
 SQL:
 - BEFORE: "sql_command"
 - AFTER: "sql_command"

VERSION

Optional. The version of the gpload control file schema. The current version is 1.0.0.1.

DATABASE

Optional. Specifies which database in the Greenplum Database system to connect to. If not
specified, defaults to $PGDATABASE if set or the current system user name. You can also
specify the database on the command line using the -d option.

USER

Management Utility Reference Utility Guide

84

Optional. Specifies which database role to use to connect. If not specified, defaults to the
current user or $PGUSER if set. You can also specify the database role on the command line
using the -U option.

If the user running gpload is not a Greenplum Database superuser, then the server
configuration parameter gp_external_grant_privileges must be set to on in order for the
load to be processed. See the Greenplum Database Reference Guide for more information.

HOST

Optional. Specifies Greenplum Database master host name. If not specified, defaults to
localhost or $PGHOST if set. You can also specify the master host name on the command line
using the -h option.

PORT

Optional. Specifies Greenplum Database master port. If not specified, defaults to 5432 or
$PGPORT if set. You can also specify the master port on the command line using the -p
option.

GPLOAD

Required. Begins the load specification section. A GPLOAD specification must have an INPUT
and an OUTPUT section defined.
INPUT

Required. Defines the location and the format of the input data to be loaded. gpload
will start one or more instances of the gpfdist file distribution program on the current
host and create the required external table definition(s) in Greenplum Database
that point to the source data. Note that the host from which you run gpload must
be accessible over the network by all Greenplum Database hosts (master and
segments).
SOURCE

Required. The SOURCE block of an INPUT specification defines the location
of a source file. An INPUT section can have more than one SOURCE block
defined. Each SOURCE block defined corresponds to one instance of the
gpfdist file distribution program that will be started on the local machine.
Each SOURCE block defined must have a FILE specification.

For more information about using the gpfdist parallel file server and single
and multiple gpfdist instances, see "Loading and Unloading Data" in the
Greenplum Database Administrator Guide.

LOCAL_HOSTNAME

Optional. Specifies the host name or IP address of the local machine
on which gpload is running. If this machine is configured with
multiple network interface cards (NICs), you can specify the host
name or IP of each individual NIC to allow network traffic to use
all NICs simultaneously. The default is to use the local machine's
primary host name or IP only.

PORT

Optional. Specifies the specific port number that the gpfdist file
distribution program should use. You can also supply a PORT_RANGE
to select an available port from the specified range. If both PORT and
PORT_RANGE are defined, then PORT takes precedence. If neither
PORT or PORT_RANGE are defined, the default is to select an available
port between 8000 and 9000.

If multiple host names are declared in LOCAL_HOSTNAME, this port
number is used for all hosts. This configuration is desired if you want
to use all NICs to load the same file or set of files in a given directory
location.

Management Utility Reference Utility Guide

85

PORT_RANGE

Optional. Can be used instead of PORT to supply a range of port
numbers from which gpload can choose an available port for this
instance of the gpfdist file distribution program.

FILE

Required. Specifies the location of a file, named pipe, or directory
location on the local file system that contains data to be loaded. You
can declare more than one file so long as the data is of the same
format in all files specified.

If the files are compressed using gzip or bzip2 (have a .gz or
.bz2 file extension), the files will be uncompressed automatically
(provided that gunzip or bunzip2 is in your path).

When specifying which source files to load, you can use the wildcard
character (*) or other C-style pattern matching to denote multiple
files. The files specified are assumed to be relative to the current
directory from which gpload is executed (or you can declare an
absolute path).

SSL

Optional. Specifies usage of SSL encryption. If SSL is set to true,
gpload starts the gpfdist server with the --ssl option and uses the
gpfdists:// protocol.

CERTIFICATES_PATH

Required when SSL is true; cannot be specified when SSL is false
or unspecified. The location specified in CERTIFICATES_PATH must
contain the following files:

• The server certificate file, server.crt

• The server private key file, server.key

• The trusted certificate authorities, root.crt

The root directory (/) cannot be specified as CERTIFICATES_PATH.

SSLCLEAN

Optional when SSL is true. Specifies the number of seconds that
the utility delays before closing an SSL session and cleaning up the
SSL resources after it completes writing data to or from a Greenplum
Database segment. The default value is 0, no delay. The maximum
value is 300 seconds. If the delay is increased, the transfer speed
decreases.

In some cases, this error might occur when copying large amounts of
data: gpfdist server closed connection. To avoid the error, you
can add a delay, for example SSCLEAN: 5.

FULLY_QUALIFIED_DOMAIN_NAME

Optional. Specifies whether gpload resolve hostnames to the fully qualified
domain name (FQDN) or the local hostname. If the value is set to true,
names are resolved to the FQDN. If the value is set to false, resolution is to
the local hostname. The default is false.

A fully qualified domain name might be required in some situations. For
example, if the Greenplum Database system is in a different domain than an
ETL application that is being accessed by gpload.

COLUMNS

Management Utility Reference Utility Guide

86

Optional. Specifies the schema of the source data file(s) in the format of
field_name:data_type. The DELIMITER character in the source file is what
separates two data value fields (columns). A row is determined by a line feed
character (0x0a).

If the input COLUMNS are not specified, then the schema of the output TABLE
is implied, meaning that the source data must have the same column order,
number of columns, and data format as the target table.

The default source-to-target mapping is based on a match of column names
as defined in this section and the column names in the target TABLE. This
default mapping can be overridden using the MAPPING section.

TRANSFORM

Optional. Specifies the name of the input transformation passed to gpload.
For information about XML transformations, see "Loading and Unloading
Data" in the Greenplum Database Administrator Guide.

TRANSFORM_CONFIG

Required when TRANSFORM is specified. Specifies the location of the
transformation configuration file that is specified in the TRANSFORM parameter,
above.

MAX_LINE_LENGTH

Optional. An integer that specifies the maximum length of a line in the XML
transformation data passed to gpload.

FORMAT

Optional. Specifies the format of the source data file(s) - either plain text
(TEXT) or comma separated values (CSV) format. Defaults to TEXT if not
specified. For more information about the format of the source data, see
"Loading and Unloading Data" in the Greenplum Database Administrator
Guide.

DELIMITER

Optional. Specifies a single ASCII character that separates columns within
each row (line) of data. The default is a tab character in TEXT mode, a
comma in CSV mode. You can also specify a non- printable ASCII character
or a non-printable unicode character, for example: "\x1B" or "\u001B".
The escape string syntax, E'character-code', is also supported for non-
printable characters. The ASCII or unicode character must be enclosed in
single quotes. For example: E'\x1B' or E'\u001B'.

ESCAPE

Specifies the single character that is used for C escape sequences (such
as \n, \t, \100, and so on) and for escaping data characters that might
otherwise be taken as row or column delimiters. Make sure to choose an
escape character that is not used anywhere in your actual column data.
The default escape character is a \ (backslash) for text-formatted files and
a " (double quote) for csv-formatted files, however it is possible to specify
another character to represent an escape. It is also possible to disable
escaping in text-formatted files by specifying the value 'OFF' as the escape
value. This is very useful for data such as text-formatted web log data that
has many embedded backslashes that are not intended to be escapes.

NULL_AS

Optional. Specifies the string that represents a null value. The default is \N
(backslash-N) in TEXT mode, and an empty value with no quotations in CSV
mode. You might prefer an empty string even in TEXT mode for cases where

Management Utility Reference Utility Guide

87

you do not want to distinguish nulls from empty strings. Any source data item
that matches this string will be considered a null value.

FORCE_NOT_NULL

Optional. In CSV mode, processes each specified column as though it were
quoted and hence not a NULL value. For the default null string in CSV mode
(nothing between two delimiters), this causes missing values to be evaluated
as zero-length strings.

QUOTE

Required when FORMAT is CSV. Specifies the quotation character for CSV
mode. The default is double-quote (").

HEADER

Optional. Specifies that the first line in the data file(s) is a header row
(contains the names of the columns) and should not be included as data to
be loaded. If using multiple data source files, all files must have a header
row. The default is to assume that the input files do not have a header row.

ENCODING

Optional. Character set encoding of the source data. Specify a string
constant (such as 'SQL_ASCII'), an integer encoding number, or 'DEFAULT'
to use the default client encoding. If not specified, the default client encoding
is used. For information about supported character sets, see the Greenplum
Database Reference Guide.

ERROR_LIMIT

Optional. Enables single row error isolation mode for this load operation.
When enabled, input rows that have format errors will be discarded provided
that the error limit count is not reached on any Greenplum Database
segment instance during input processing. If the error limit is not reached,
all good rows will be loaded and any error rows will either be discarded or
logged to the table specified in ERROR_TABLE. The default is to abort the
load operation on the first error encountered. Note that single row error
isolation only applies to data rows with format errors; for example, extra or
missing attributes, attributes of a wrong data type, or invalid client encoding
sequences. Constraint errors, such as primary key violations, will still cause
the load operation to abort if encountered. For information about handling
load errors, see "Loading and Unloading Data" in the Greenplum Database
Administrator Guide.

LOG_ERRORS

Optional when ERROR_LIMIT is declared. Value is either true or false.
The default value is false. If the value is true, rows with formatting errors
are logged internally when running in single row error isolation mode. You
can examine formatting errors with the Greenplum Database built-in SQL
function gp_read_error_log('table_name'). If formatting errors are
detected when loading data, gpload generates a warning message with the
name of the table that contains the error information similar to this message.

timestamp|WARN|1 bad row, please use GPDB built-in function
 gp_read_error_log('table-name')
 to access the detailed error row

If LOG_ERRORS: true is specified, REUSE_TABLES: true must be specified
to retain the formatting errors in Greenplum Database error logs. If
REUSE_TABLES: true is not specified, the error information is deleted after
the gpload operation. You can delete the formatting errors from the error
logs with the Greenplum Database function gp_truncate_error_log().

Management Utility Reference Utility Guide

88

Only LOG_ERRORS or ERROR_TABLE can be specified. If both are specified, an
error message is returned.

For more information about handling load errors, see "Loading and
Unloading Data" in the Greenplum Database Administrator Guide. For
information about the gp_read_error_log() function, see the CREATE
EXTERNAL TABLE command in the Greenplum Database Reference Guide

ERROR_TABLE

Optional when ERROR_LIMIT is declared. Specifies an error table where
rows with formatting errors will be logged when running in single row error
isolation mode. You can then examine this error table to see error rows that
were not loaded (if any). If the ERROR_TABLE specified already exists, it will
be used. If it does not exist, it will be automatically generated.

Only LOG_ERRORS or ERROR_TABLE can be specified. If both are specified, an
error message is returned. Use LOG_ERRORS to capture formatting errors.

For more information about handling load errors, see "Loading and
Unloading Data" in the Greenplum Database Administrator Guide.

EXTERNAL

Optional. Defines the schema of the external table database objects created
by gpload.

The default is to use the Greenplum Database search_path.

SCHEMA

Required when EXTERNAL is declared. The name of the schema of
the external table. If the schema does not exist, an error is returned.

If % (percent character) is specified, the schema of the table name
specified by TABLE in the OUTPUT section is used. If the table name
does not specify a schema, the default schema is used.

OUTPUT

Required. Defines the target table and final data column values that are to be loaded
into the database.
TABLE

Required. The name of the target table to load into.

MODE

Optional. Defaults to INSERT if not specified. There are three available load
modes:

INSERT - Loads data into the target table using the following method:

INSERT INTO target_table SELECT * FROM input_data;

UPDATE - Updates the UPDATE_COLUMNS of the target table where the rows
have MATCH_COLUMNS attribute values equal to those of the input data, and
the optional UPDATE_CONDITION is true.

MERGE - Inserts new rows and updates the UPDATE_COLUMNS of existing
rows where FOOBAR attribute values are equal to those of the input data,
and the optional MATCH_COLUMNS is true. New rows are identified when the
MATCH_COLUMNS value in the source data does not have a corresponding
value in the existing data of the target table. In those cases, the entire row
from the source file is inserted, not only the MATCH and UPDATE columns. If
there are multiple new MATCH_COLUMNS values that are the same, only one
new row for that value will be inserted. Use UPDATE_CONDITION to filter out
the rows to discard.

Management Utility Reference Utility Guide

89

MATCH_COLUMNS

Required if MODE is UPDATE or MERGE. Specifies the column(s) to use as
the join condition for the update. The attribute value in the specified target
column(s) must be equal to that of the corresponding source data column(s)
in order for the row to be updated in the target table.

UPDATE_COLUMNS

Required if MODE is UPDATE or MERGE. Specifies the column(s) to update
for the rows that meet the MATCH_COLUMNS criteria and the optional
UPDATE_CONDITION.

UPDATE_CONDITION

Optional. Specifies a Boolean condition (similar to what you would declare in
a WHERE clause) that must be met in order for a row in the target table to be
updated (or inserted in the case of a MERGE).

MAPPING

Optional. If a mapping is specified, it overrides the default source-to-target
column mapping. The default source-to-target mapping is based on a match
of column names as defined in the source COLUMNS section and the column
names of the target TABLE. A mapping is specified as either:

target_column_name: source_column_name

or

target_column_name: 'expression'

Where expression is any expression that you would specify in the SELECT
list of a query, such as a constant value, a column reference, an operator
invocation, a function call, and so on.

PRELOAD

Optional. Specifies operations to run prior to the load operation. Right now the only preload
operation is TRUNCATE.
TRUNCATE

Optional. If set to true, gpload will remove all rows in the target table prior to loading
it.

REUSE_TABLES

Optional. If set to true, gpload will not drop the external table objects and staging
table objects it creates. These objects will be reused for future load operations
that use the same load specifications. This improves performance of trickle loads
(ongoing small loads to the same target table).

If LOG_ERRORS: true is specified, REUSE_TABLES: true must be specified to retain
the formatting errors in Greenplum Database error logs. If REUSE_TABLES: true is
not specified, formatting error information is deleted after the gpload operation.

SQL

Optional. Defines SQL commands to run before and/or after the load operation. You can
specify multiple BEFORE and/or AFTER commands. List commands in the order of desired
execution.
BEFORE

Optional. An SQL command to run before the load operation starts. Enclose
commands in quotes.

AFTER

Optional. An SQL command to run after the load operation completes. Enclose
commands in quotes.

Management Utility Reference Utility Guide

90

Log File Format
Log files output by gpload have the following format:

timestamp|level|message

Where timestamp takes the form: YYYY-MM-DD HH:MM:SS, level is one of DEBUG, LOG, INFO, ERROR, and
message is a normal text message.

Some INFO messages that may be of interest in the log files are (where # corresponds to the actual
number of seconds, units of data, or failed rows):

INFO|running time: #.## seconds
INFO|transferred #.# kB of #.# kB.
INFO|gpload succeeded
INFO|gpload succeeded with warnings
INFO|gpload failed
INFO|1 bad row
INFO|# bad rows

Notes
If your database object names were created using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the gpload control file. For example, if you create a table
as follows:

CREATE TABLE "MyTable" ("MyColumn" text);

Your YAML-formatted gpload control file would refer to the above table and column names as follows:

- COLUMNS:
 - '"MyColumn"': text
OUTPUT:
 - TABLE: public.'"MyTable"'

Examples
Run a load job as defined in my_load.yml:

gpload -f my_load.yml

Example load control file:

VERSION: 1.0.0.1
DATABASE: ops
USER: gpadmin
HOST: mdw-1
PORT: 5432
GPLOAD:
 INPUT:
 - SOURCE:
 LOCAL_HOSTNAME:
 - etl1-1
 - etl1-2
 - etl1-3
 - etl1-4
 PORT: 8081
 FILE:
 - /var/load/data/*
 - COLUMNS:
 - name: text
 - amount: float4
 - category: text

Management Utility Reference Utility Guide

91

 - desc: text
 - date: date
 - FORMAT: text
 - DELIMITER: '|'
 - ERROR_LIMIT: 25
 - LOG_ERRORS: true
 OUTPUT:
 - TABLE: payables.expenses
 - MODE: INSERT
 PRELOAD:
 - REUSE_TABLES: true
 SQL:
 - BEFORE: "INSERT INTO audit VALUES('start', current_timestamp)"
 - AFTER: "INSERT INTO audit VALUES('end', current_timestamp)"

See Also
gpfdist, CREATE EXTERNAL TABLE in the Greenplum Database Reference Guide

Management Utility Reference Utility Guide

92

gplogfilter
Searches through Greenplum Database log files for specified entries.

Synopsis
gplogfilter [timestamp_options] [pattern_options]
 [output_options] [input_options] [input_file]

gplogfilter --help

gplogfilter --version

Description
The gplogfilter utility can be used to search through a Greenplum Database log file for entries
matching the specified criteria. If an input file is not supplied, then gplogfilter will use the
$MASTER_DATA_DIRECTORY environment variable to locate the Greenplum master log file in the standard
logging location. To read from standard input, use a dash (-) as the input file name. Input files may
be compressed using gzip. In an input file, a log entry is identified by its timestamp in YYYY-MM-DD
[hh:mm[:ss]] format.

You can also use gplogfilter to search through all segment log files at once by running it through the
gpssh utility. For example, to display the last three lines of each segment log file:

gpssh -f seg_host_file
=> source /usr/local/greenplum-db/greenplum_path.sh
=> gplogfilter -n 3 /gpdata/*/pg_log/gpdb*.csv

By default, the output of gplogfilter is sent to standard output. Use the -o option to send the output to
a file or a directory. If you supply an output file name ending in .gz, the output file will be compressed by
default using maximum compression. If the output destination is a directory, the output file is given the
same name as the input file.

Options
Timestamp Options
-b datetime | --begin=datetime

Specifies a starting date and time to begin searching for log entries in the format of YYYY-MM-
DD [hh:mm[:ss]].

If a time is specified, the date and time must be enclosed in either single or double quotes.
This example encloses the date and time in single quotes:

gplogfilter -b '2013-05-23 14:33'

-e datetime | --end=datetime

Specifies an ending date and time to stop searching for log entries in the format of YYYY-MM-
DD [hh:mm[:ss]].

If a time is specified, the date and time must be enclosed in either single or double quotes.
This example encloses the date and time in single quotes:

gplogfilter -e '2013-05-23 14:33'

-d time | --duration=time

Management Utility Reference Utility Guide

93

Specifies a time duration to search for log entries in the format of [hh][:mm[:ss]]. If used
without either the -b or -e option, will use the current time as a basis.

Pattern Matching Options
-c i [gnore] | r [espect] | --case=i [gnore] | r [espect]

Matching of alphabetic characters is case sensitive by default unless proceeded by the --
case=ignore option.

-C 'string' | --columns='string'

Selects specific columns from the log file. Specify the desired columns as a comma-delimited
string of column numbers beginning with 1, where the second column from left is 2, the third
is 3, and so on. See "Viewing the Database Server Log Files" in the Greenplum Database
Administrator Guide for details about the log file format and for a list of the available columns
and their associated number.

-f 'string' | --find='string'

Finds the log entries containing the specified string.

-F 'string' | --nofind='string'

Rejects the log entries containing the specified string.

-m regex | --match=regex

Finds log entries that match the specified Python regular expression. See https://
docs.python.org/3/library/re.html for Python regular expression syntax.

-M regex | --nomatch=regex

Rejects log entries that match the specified Python regular expression. See https://
docs.python.org/3/library/re.html for Python regular expression syntax.

-t | --trouble

Finds only the log entries that have ERROR:, FATAL:, or PANIC: in the first line.

Output Options
-n integer | --tail=integer

Limits the output to the last integer of qualifying log entries found.

-s offset [limit] | --slice=offset [limit]

From the list of qualifying log entries, returns the limit number of entries starting at the offset
entry number, where an offset of zero (0) denotes the first entry in the result set and an offset
of any number greater than zero counts back from the end of the result set.

-o output_file | --out=output_file

Writes the output to the specified file or directory location instead of STDOUT.

-z 0-9 | --zip=0-9

Compresses the output file to the specified compression level using gzip, where 0 is no
compression and 9 is maximum compression. If you supply an output file name ending in
.gz, the output file will be compressed by default using maximum compression.

-a | --append

If the output file already exists, appends to the file instead of overwriting it.

Input Options
input_file

The name of the input log file(s) to search through. If an input file is not supplied,
gplogfilter will use the $MASTER_DATA_DIRECTORY environment variable to locate the
Greenplum Database master log file. To read from standard input, use a dash (-) as the input
file name.

-u | --unzip

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

Management Utility Reference Utility Guide

94

Uncompress the input file using gunzip. If the input file name ends in .gz, it will be
uncompressed by default.

--help

Displays the online help.

--version

Displays the version of this utility.

Examples
Display the last three error messages in the master log file:

gplogfilter -t -n 3

Display all log messages in the master log file timestamped in the last 10 minutes:

gplogfilter -d :10

Display log messages in the master log file containing the string |con6 cmd11|:

gplogfilter -f '|con6 cmd11|'

Using gpssh, run gplogfilter on the segment hosts and search for log messages in the segment log files
containing the string con6 and save output to a file.

gpssh -f seg_hosts_file -e 'source
/usr/local/greenplum-db/greenplum_path.sh ; gplogfilter -f
con6 /gpdata/*/pg_log/gpdb*.csv' > seglog.out

See Also
gpssh, gpscp

Management Utility Reference Utility Guide

95

gpmapreduce
Runs Greenplum MapReduce jobs as defined in a YAML specification document.

Synopsis
gpmapreduce -f yaml_file [dbname [username]]
 [-k name=value | --key name=value]
 [-h hostname | --host hostname] [-p port| --port port]
 [-U username | --username username] [-W] [-v]

gpmapreduce -x | --explain

gpmapreduce -X | --explain-analyze

gpmapreduce -V | --version

gpmapreduce -h | --help

Prerequisites
The following are required prior to running this program:

• You must have your MapReduce job defined in a YAML file. For information about the Greenplum
MapReduce specification, see the Greenplum Database Reference Guide.

• You must be a Greenplum Database superuser to run MapReduce jobs written in untrusted Perl or
Python.

• You must be a Greenplum Database superuser to run MapReduce jobs with EXEC and FILE inputs.

• You must be a Greenplum Database superuser to run MapReduce jobs with GPFDIST input unless the
server configuration parameter gp_external_grant_privileges is set to on. See the Greenplum
Database Reference Guide for more information.

Description
MapReduce is a programming model developed by Google for processing and generating large data sets
on an array of commodity servers. Greenplum MapReduce allows programmers who are familiar with the
MapReduce paradigm to write map and reduce functions and submit them to the Greenplum Database
parallel engine for processing.

In order for Greenplum to be able to process MapReduce functions, the functions need to be defined
in a YAML document, which is then passed to the Greenplum MapReduce program, gpmapreduce, for
execution by the Greenplum Database parallel engine. The Greenplum system takes care of the details of
distributing the input data, executing the program across a set of machines, handling machine failures, and
managing the required inter-machine communication.

Options
-f yaml_file

Required. The YAML file that contains the Greenplum MapReduce job definitions. See the
Greenplum Database Reference Guide.

-? | --help

Show help, then exit.

-V | --version

Show version information, then exit.

-v | --verbose

https://en.wikipedia.org/wiki/MapReduce

Management Utility Reference Utility Guide

96

Show verbose output.

-x | --explain

Do not run MapReduce jobs, but produce explain plans.

-X | --explain-analyze

Run MapReduce jobs and produce explain-analyze plans.

-k | --keyname=value

Sets a YAML variable. A value is required. Defaults to "key" if no variable name is specified.

Connection Options
-h host | --host host

Specifies the host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system user name.

-W | --password

Force a password prompt.

Examples
Run a MapReduce job as defined in my_yaml.txt and connect to the database mydatabase:

gpmapreduce -f my_yaml.txt mydatabase

See Also
Greenplum MapReduce specification in the Greenplum Database Reference Guide

Management Utility Reference Utility Guide

97

gpmfr
Manages the Greenplum Database backup images that are stored on a local Data Domain system and a
remote Data Domain system that is used for disaster recovery. Managed file replication is used for disaster
recovery by the Data Domain Boost software option to transfer a backup image from one Data Domain
system to another.

Synopsis
gpmfr --delete {LATEST | OLDEST | timestamp}[--remote]
 [--master-port= master_port] [--skip-ping]
 [--ddboost-storage-unit =unit-ID]
 [-a] [-v | --verbose]

gpmfr {--replicate | --recover} {LATEST | OLDEST | timestamp}
 --max-streams max_IO_streams [--master-port= master_port] [--skip-ping]
 [--ddboost-storage-unit =unit-ID]
 [-a] [-q | --quiet] [-v | --verbose]

gpmfr {--list {LATEST | OLDEST | timestamp} }
 [--ddboost-storage-unit =unit-ID]
 [--master-port= master_port] [--remote] [--skip-ping]
 [-v | --verbose]

gpmfr --list-files {LATEST | OLDEST | timestamp}
 [--ddboost-storage-unit =unit-ID]
 [--master-port= master_port] [--remote] [--skip-ping]
 [-v | --verbose]

gpmfr --show-streams [--skip-ping] [-v | --verbose]

gpmfr -h | --help

gpmfr --version

Prerequisites
The Data Domain systems that are used as local and remote backup systems for managed file replication
must have Data Domain Boost and Replicator enabled.

The Greenplum Database master host segment hosts must be able to connect to both the local Data
Domain system and the remote Data Domain system.

The login credentials for the local and remote Data Domain systems must be configured on the Greenplum
master host with the gpcrondump utility. See "Backing Up and Restoring Databases" in the Greenplum
Database Administrator Guide for information about setting up Data Domain systems for use with
Greenplum Database.

See the Greenplum Database Release Notes for information about the supported version of Data Domain
Boost.

Description
The gpmfr utility provides these capabilities:

• Lists the backup data sets that are on the local or the remote Data Domain system.

• Replicates a backup data set that is on the local Data Domain system to the remote system.

• Recovers a backup data set that is on the remote Data Domain system to the local system.

• Deletes a backup data set that is on the local or the remote Data Domain system.

Management Utility Reference Utility Guide

98

The Greenplum Database backup sets are identified by timestamps (yyyymmddhhmmss).

gpmfr attempts to schedule the replication task for the files in backup data set. It ensures that the limit on
the maximum number of I/O streams used for replication is never exceeded. The I/O streams limit is set
with the --max-streams option that accompanies the --replicate or --recover option.

When cancelling a replication operation, gpmfr kills all active replication processes and cleans up all the
files on replication Data Domain system.

Options
-a (do not prompt)

Do not prompt the user for confirmation. Progress information is displayed on the output.
Specify the option -q or --quiet to write progress information to the log file.

--ddboost-storage-unit=unit-ID

Optional. Specify a valid storage unit ID for the Data Domain system that is used for the
gpmfr operation. A replicate or recover operation uses the same storage unit ID on both local
and remote Data Domain systems. If the storage unit on the destination Data Domain system
(where the backup is being copied) is created if it does not exist.

If this option is not specified, the utility uses the storage unit specified when configuring the
DD Boost credentials or the default ID GPDB.

--delete {LATEST | OLDEST | timestamp}

Deletes a Greenplum Database backup set from the local Data Domain system. Specify the
option --remote to delete the backup set from the remote Data Domain system.

LATEST specifies deleting the latest backup set (first in chronological order).

OLDEST specifies deleting the backup set that is oldest in chronological order.

timestamp specifies deleting the Greenplum Database backup set identified by the
timestamp.

--list

Lists the Greenplum Database backup sets that are on the local Data Domain system. The
backup sets are identified by timestamps (yyyymmddhhmmss).

Specify the option --remote to list the Greenplum Database backup sets that are on the
remote Data Domain system.

--list-files {LATEST | OLDEST | timestamp}

Lists the files in a Greenplum Database backup that is on the local Data Domain system.
Specify the option --remote to list the files in the backup set that is on the remote Data
Domain system.

LATEST specifies listing the files in the latest backup set (first in chronological order).

OLDEST specifies listing the files in the backup set that is oldest in chronological order.

timestamp specifies listing the file in the backup set identified by the timestamp.

--master-port=master_port

Specifies the Greenplum Database master port number. To validate backup sets, the utility
retrieves information from the Greenplum Database instance that uses the port number. If the
option is not specified, the default value is 5432.

If gpmfr does not find a Greenplum Database, validation is skipped and a warning is
displayed.

--max-streams max_IO_streams

Specifies the maximum number of Data Domain I/O streams that can be used when copying
the backup set between the local and remote Data Domain systems.

Management Utility Reference Utility Guide

99

-q | --quiet (no screen output)

Runs in quiet mode. File transfer progress information is not displayed on the output, it is
written to the log file. If this option is not specified, progress information is only displayed on
screen, it is not written to the log file.

--recover {LATEST | OLDEST | timestamp}

Recovers a Greenplum Database backup set that is available on the remote Data Domain
system to the local system.

LATEST specifies recovering the most recent backup set (first in chronological order).

OLDEST specifies recovering the backup set that is oldest in chronological order.

timestamp specifies recovering the backup set identified by the timestamp.

If a backup set with the same timestamp exists on local Data Domain system, the utility
prompts you to confirm replacing the backup.

A progress bar indicating transfer status of the backup set is shown on shown at the output.

--replicate {LATEST | OLDEST | timestamp}

Replicates a Greenplum Database backup set that is on the local Data Domain system to the
remote system.

LATEST specifies replicating the most recent backup set (first in chronological order).

OLDEST specifies replicating the backup set that is oldest in chronological order.

timestamp specifies replicating the backup set identified by the timestamp.

If a backup set with the same timestamp exists on remote Data Domain system, the utility
prompts you to confirm replacing the backup.

A progress bar indicating transfer status of the backup set is shown at the output.

A backup set must be completely backed up to the local Domain system before it can be
replicated to the remote Data Domain system.

--remote

Perform the operation on the remote Data Domain system that is used for disaster recovery.

For example, gpmfr --list lists the backup sets that are on the local Data Domain system
that is used to back up Greenplum Database. gpmfr --list --remote lists the backup sets
that are on the remote system.

--show-streams

Displays the replication I/O stream soft limit and the number of I/O streams that are in use.

--skip-ping

Specify this option to skip the ping of a Data Domain system. gpmfr uses ping to ensure that
the Data Domain system is reachable. If the Data Domain host is configured to block ICMP
ping probes, specify this option to skip the ping of the Data Domain system.

-h | --help

Displays the online help.

-v | --verbose

Specifies verbose logging mode. Additional log information is written to the log file during
command execution.

--version

Displays the version of this utility.

Management Utility Reference Utility Guide

100

Example
The following example replicates the latest backup set on the local Data Domain sever to the remote
server. The maximum number of I/O streams that can be used for the replication is 30.

gpmfr --replicate LATEST --max-streams 30

See Also
gpcrondump, gpdbrestore

Management Utility Reference Utility Guide

101

gpmigrator
Upgrades an existing Greenplum Database 4.2.x system without mirrors to 4.3.x.

Note: Greenplum Database utility gpmigrator is deprecated. The utility will be removed in a future
release.

Use gpmigrator_mirror to upgrade a 4.2.x system that has mirrors.

Note: Using gpmigrator on a system with mirrors causes an error.

Synopsis
gpmigrator old_GPHOME_path new_GPHOME_path
 [-d master_data_directory]
 [-l logfile_directory] [-q] [--debug]
 [--check-only] [--skip-check] [-R]

gpmigrator --version | -v

gpmigrator --help | -h

Prerequisites
The following tasks should be performed prior to executing an upgrade:

• Make sure you are logged in to the master host as the Greenplum Database superuser (gpadmin).

• Install the Greenplum Database 4.3 binaries on all Greenplum hosts.

• Copy or preserve any additional folders or files (such as backup folders) that you have added in the
Greenplum data directories or $GPHOME directory. Only files or folders strictly related to Greenplum
Database operations are preserved by the migration utility.

• (Optional) Run VACUUM on all databases, and remove old server log files from pg_log in your master
and segment data directories. This is not required, but will reduce the size of Greenplum Database files
to be backed up and migrated.

• Check for and recover any failed segments in your current Greenplum Database system (gpstate,
gprecoverseg).

• (Optional, but highly recommended) Backup your current databases (gpcrondump). If you find any
issues when testing your upgraded system, you can restore this backup.

• Remove the standby master from your system configuration (gpinitstandby -r).

• Do a clean shutdown of your current system (gpstop).

• Update your environment to source the 4.3 installation.

• Inform all database users of the upgrade and lockout time frame. Once the upgrade is in process, users
will not be allowed on the system until the upgrade is complete.

Description
The gpmigrator utility upgrades an existing Greenplum Database 4.2.x.x system without mirrors to 4.3.
This utility updates the system catalog and internal version number, but not the actual software binaries.
During the migration process, all client connections to Greenplum Database will be locked out.

Options
old_GPHOME_path

Required. The absolute path to the current version of Greenplum Database software you
want to migrate away from.

Management Utility Reference Utility Guide

102

new_GPHOME_path

Required. The absolute path to the new version of Greenplum Database software you want to
migrate to.

-d master_data_directory

Optional. The current master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-q (quiet mode)

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

-R (revert)

In the event of an error during upgrade, reverts all changes made by gpmigrator.

--check-only

Runs pre-migrate checks to verify that your database is healthy.

Checks include:

• Check catalog health

• Check that the Greenplum Database binaries on each segment match those on the
master

• Check for a minimum amount of free disk space

Performing a pre-migration check of your database should done during a database
maintenance period. If the utility detects catalog errors, the utility stops the database.

--skip-check

Skip the catalog check during the normal upgrade process. This can save some time, if a
catalog check was performed separately during the upgrade process.

Important: Use this option only after you have checked for catalog issues with
the --check-only option and have resolved any catalog issues.

--help | -h

Displays the online help.

--debug

Sets logging level to debug.

--version | -v

Displays the version of this utility.

Examples
Upgrade to version 4.3.x from version 4.2.x (make sure you are using the 4.3 version of gpmigrator). This
example upgrades to version 4.3.0.0 from version 4.2.6.3:

/usr/local/greenplum-db-4.3.0.0/bin/gpmigrator \
 /usr/local/greenplum-db-4.2.6.3 \
 /usr/local/greenplum-db-4.3.0.0

See Also
gpmigrator_mirror, gpstop, gpstate, gprecoverseg, gpcrondump

Management Utility Reference Utility Guide

103

gpmigrator_mirror
Upgrades an existing Greenplum Database 4.2.x system with mirrors to 4.3.x.

Note: Greenplum Database utility gpmigrator is deprecated. The utility will be removed in a future
release.

Use gpmigrator to upgrade a 4.2.x system that does not have mirrors.

Note: Using gpmigrator_mirror on a system without mirrors causes an error.

Synopsis
gpmigrator_mirror old_GPHOME_path new_GPHOME_path
 [-d master_data_directory]
 [-l logfile_directory] [-q] [--debug]
 [--check-only] [--skip-check] [--debug]

gpmigrator_mirror --version | -v

gpmigrator_mirror --help | -h

Prerequisites
The following tasks should be performed prior to executing an upgrade:

• Make sure you are logged in to the master host as the Greenplum Database superuser (gpadmin).

• Install the Greenplum Database 4.3 binaries on all Greenplum hosts.

• Copy or preserve any additional folders or files (such as backup folders) that you have added in the
Greenplum data directories or $GPHOME directory. Only files or folders strictly related to Greenplum
Database operations are preserved by the migration utility.

• (Optional) Run VACUUM on all databases, and remove old server log files from pg_log in your master
and segment data directories. This is not required, but will reduce the size of Greenplum Database files
to be backed up and migrated.

• Check for and recover any failed segments in your current Greenplum Database system (gpstate,
gprecoverseg).

• (Optional, but highly recommended) Backup your current databases (gpcrondump). If you find any
issues when testing your upgraded system, you can restore this backup.

• Remove the standby master from your system configuration (gpinitstandby -r).

• Do a clean shutdown of your current system (gpstop).

• Update your environment to source the 4.3 installation.

• Inform all database users of the upgrade and lockout time frame. Once the upgrade is in process, users
will not be allowed on the system until the upgrade is complete.

Description
The gpmigrator_mirror utility upgrades an existing Greenplum Database 4.2.x.x system with mirrors
to 4.3. This utility updates the system catalog and internal version number, but not the actual software
binaries. During the migration process, all client connections to Greenplum Database will be locked out.

Options
old_GPHOME_path

Required. The absolute path to the current version of Greenplum Database software you
want to migrate away from.

Management Utility Reference Utility Guide

104

new_GPHOME_path

Required. The absolute path to the new version of Greenplum Database software you want to
migrate to.

-d master_data_directory

Optional. The current master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-q (quiet mode)

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

--check-only

Runs pre-migrate checks to verify that your database is healthy.

Checks include:

Check catalog health

Check that the Greenplum Database binaries on each segment match those on the master

Check for a minium amount of free disk space

Performing a pre-migration check of your database should done during a database
maintenance period. If the utility detects catalog errors, the utility stops the database.

--skip-check

Skip the catalog check during the normal upgrade process. This can save some time, if a
catalog check was performed separately during the upgrade process.

Important: Use this option only after you have checked for catalog issues with
the --check-only option and have resolved any catalog issues.

--help | -h

Displays the online help.

--debug

Sets logging level to debug.

--version | -v

Displays the version of this utility.

Examples
Upgrade to version 4.3.x from version 4.2.x with mirrors (make sure you are using the 4.3 version of
gpmigrator_mirror). This example upgrades to 4.3.0.0 from 4.2.6.3:

/usr/local/greenplum-db-4.3.0.0/bin/gpmigrator_mirror \
 /usr/local/greenplum-db-4.2.6.3 \
 /usr/local/greenplum-db-4.3.0.0

See Also
gpmigrator, gpstop, gpstate, gprecoverseg, gpcrondump

Management Utility Reference Utility Guide

105

gpperfmon_install
Installs the gpperfmon database, which is used by Greenplum Command Center, and optionally enables
the data collection agents.

Synopsis
gpperfmon_install --port gpdb_port
 [--enable --password gpmon_password [--pgpass path_to_file]]
 [--verbose]

gpperfmon_install --help | -h | -?

Description
The gpperfmon_install utility automates the steps required to enable the data collection agents. You
must be the Greenplum Database system user (gpadmin) to run this utility. The --port option is required.
When using the --enable option, the --password option is also required. Use the --port option to supply
the port of the Greenplum Database master instance. If using the --enable option, Greenplum Database
must be restarted after the utility completes.

When run without the --enable option, the utility just creates the gpperfmon database (the database used
to store system metrics collected by the data collection agents). When run with the --enable option, the
utility also runs the following additional tasks necessary to enable the performance monitor data collection
agents:

1. Creates the gpmon superuser role in Greenplum Database. The data collection agents require this
role to connect to the database and write their data. The gpmon superuser role uses MD5-encrypted
password authentication by default. Use the --password option to set the gpmon superuser's password.

2. Updates the $MASTER_DATA_DIRECTORY/pg_hba.conf file. The utility adds these lines to the host-based
authentication file (pg_hba.conf):

local gpperfmon gpmon md5
host all gpmon 127.0.0.1/28 md5
host all gpmon ::1/128 md5

The second and third lines, the host entries, give gpmon access to all Greenplum Database databases.

Note: It might be necessary to edit the lines in the pg_hba.conf file after running the
gpperfmon_install utility to limit the gpmon role's access to databases or to change the
authentication method. After you edit the file, run gpstop -u to reload the file in Greenplum
Database.

• To limit gpmon access to just the gpperfmon database, edit the host entries in
thepg_hba.conf file. For the gpmon user change the second field from all to gpperfmon:

local gpperfmon gpmon md5
host gpperfmon gpmon 127.0.0.1/28 md5
host gpperfmon gpmon ::1/128 md5

• The gpperfmon_install utility assumes the default MD5 authentication method. Greenplum
Database can optionally be configured to use the SHA-256 hash algorithm to compute
the password hashes saved in the system catalog. This is incompatible with the MD5
authentication method, which expects an MD5 hash or clear text password in the system
catalog. Because of this, if you have enabled the SHA-256 hash algorithm in the database,

Management Utility Reference Utility Guide

106

you must edit the pg_hba.conf file after running the gpperfmon_install utility. For the host
entries, change the authentication method for the gpmon role from md5 to password:

local gpperfmon gpmon md5
host all gpmon 127.0.0.1/28 password
host all gpmon ::1/128 password

The password authentication method submits the user's clear text password for
authentication and should not be used on an untrusted network. See "Protecting Passwords
in Greenplum Database" in the Greenplum Database Administrator Guide for more
information about configuring password hashing.

3. Updates the password file (.pgpass). In order to allow the data collection agents to connect as the
gpmon role without a password prompt, you must have a password file that has an entry for the gpmon
user. The utility adds the following entry to your password file (if the file does not exist, the utility will
create it):

*:5432:gpperfmon:gpmon:gpmon_password

If your password file is not located in the default location (~/.pgpass), use the --pgpass option to
specify the file location.

4. Sets the server configuration parameters for Greenplum Command Center. The following parameters
must be enabled for the data collection agents to begin collecting data. The utility sets the following
parameters in the Greenplum Database postgresql.conf configuration files:

• gp_enable_gpperfmon=on (in all postgresql.conf files)

• gpperfmon_port=8888 (in all postgresql.conf files)

• gp_external_enable_exec=on (in the master postgresql.conf file)

Data collection agents can be configured by setting parameters in the gpperfmon.conf configuration
file. See Data Collection Agent Configuration for details.

For information about Greenplum Command Center, see the Greenplum Command Center
Documentation.

Options
--enable

In addition to creating the gpperfmon database, performs the additional steps required to
enable the data collection agents. When --enable is specified the utility will also create and
configure the gpmon superuser account and set the Command Center server configuration
parameters in the postgresql.conf files.

--password gpmon_password

Required if --enable is specified. Sets the password of the gpmon superuser. Disallowed if
--enable is not specified.

--port gpdb_port

Required. Specifies the connection port of the Greenplum Database master.

--pgpass path_to_file

Optional if --enable is specified. If the password file is not in the default location of
~/.pgpass, specifies the location of the password file.

--verbose

Sets the logging level to verbose.

--help | -h | -?

Displays the online help.

https://gpcc.docs.pivotal.io
https://gpcc.docs.pivotal.io

Management Utility Reference Utility Guide

107

Data Collection Agent Configuration
The $MASTER_DATA_DIRECTORY/gpperfmon/conf/gpperfmon.conf file stores configuration parameters
for the data collection agents. For configuration changes to these options to take effect, you must save
gpperfmon.conf and then restart Greenplum Database server (gpstop -r).

The gpperfmon.conf file contains the following configuration parameters.

Parameter Description

log_location Specifies a directory location for gpperfmon
log files. Default is $MASTER_DATA_DIRECTORY/
gpperfmon/logs.

min_query_time Specifies the minimum query run time in seconds
for statistics collection. All queries that run longer
than this value are logged in the queries_history
table. For queries with shorter run times, no
historical data is collected. Defaults to 20 seconds.

If you know that you want to collect data for all
queries, you can set this parameter to a low value.
Setting the minimum query run time to zero,
however, collects data even for the numerous
queries run by Greenplum Command Center,
creating a large amount of data that may not be
useful.

max_log_size This parameter is not included in gpperfmon.conf,
but it may be added to this file.

To prevent the log files from growing to excessive
size, you can add the max_log_size parameter to
gpperfmon.conf. The value of this parameter is
measured in bytes. For example:

max_log_size = 10485760

With this setting, the log files will grow to 10MB
before the system rolls over to a new log file.

partition_age The number of months that gperfmon statistics data
will be retained. The default it is 0, which means we
won’t drop any data.

quantum Specifies the time in seconds between updates
from data collection agents on all segments. Valid
values are 10, 15, 20, 30, and 60. Defaults to 15
seconds.

If you prefer a less granular view of performance,
or want to collect and analyze minimal amounts of
data for system metrics, choose a higher quantum.
To collect data more frequently, choose a lower
value.

ignore_qexec_packet (Deprecated) When set to true, data collection
agents do not collect performance data in the
gpperfmon database queries_* tables: rows_out,
cpu_elapsed, cpu_currpct, skew_cpu, and

Management Utility Reference Utility Guide

108

Parameter Description

skew_rows. The default setting, true, reduces
the amount of memory consumed by the gpmmon
process. Set this parameter to false if you require
this additional performance data.

smdw_aliases This parameter allows you to specify additional host
names for the standby master. For example, if the
standby master has two NICs, you can enter:

smdw_aliases=smdw-1,smdw-2

This optional fault tolerance parameter is useful if
the Greenplum Command Center loses connectivity
with the standby master. Instead of continuously
retrying to connect to host smdw, it will try to
connect to the NIC-based aliases of smdw-1 and/
or smdw-2. This ensures that the Command Center
Console can continuously poll and monitor the
standby master.

Notes
The gpperfmon database and Greenplum Command Center require the gpmon role. After the gpperfmon
database and gpmon role have been created, you can change the password for the gpmon role and update
the information that Greenplum Command Center uses to connect to the gpperfmon database:

1. Log in to Greenplum Database as a superuser and change the gpmon password with the ALTER ROLE
command.

ALTER ROLE gpmon WITH PASSWORD 'new_password' ;

2. Update the password in .pgpass file that is used by Greenplum Command Center. The default file
location is the gpadmin home directory (~/.pgpass). The .pgpass file contains a line with the gpmon
password.

*:5432:gpperfmon:gpmon:new_password

3. Restart the Greenplum Command Center with the Command Center gpcmdr utility.

$ gpcmdr --restart

The gpperfmon monitoring system requires some initialization after startup. Monitoring information appears
after a few minutes have passed, and not immediately after installation and startup of the gpperfmon
system.

Examples
Create the gpperfmon database only:

$ su - gpadmin
$ gpperfmon_install --port 5432

Create the gpperfmon database, create the gpmon superuser, and enable the data collection agents:

$ su - gpadmin
$ gpperfmon_install --enable --password changeme --port 5432
$ gpstop -r

Management Utility Reference Utility Guide

109

See Also
gpstop

Management Utility Reference Utility Guide

110

gppkg
Installs Greenplum Database extensions such as pgcrypto, PL/R, PL/Java, PL/Perl, PostGIS, and MADlib,
along with their dependencies, across an entire cluster.

Synopsis
gppkg [-i package | -u package | -r name-version | -c]
 [-d master_data_directory] [-a] [-v]

gppkg --migrate GPHOME_old GPHOME_new [-a] [-v]

gppkg [-q | --query] query_option

gppkg -? | --help | -h

gppkg --version

Description
The Greenplum Package Manager (gppkg) utility installs Greenplum Database extensions, along with any
dependencies, on all hosts across a cluster. It will also automatically install extensions on new hosts in the
case of system expansion and segment recovery.

First, download one or more of the available packages from Pivotal Network then copy it to the master
host. Use the Greenplum Package Manager to install each package using the options described below.

Note: After a major upgrade to Greenplum Database, you must download and install all extensions
again.

Examples of database extensions and packages software that are delivered using the Greenplum Package
Manager are:

• PostGIS

• PL/Java

• PL/R

• PL/Perl

• MADlib

• Pgcrypto

Note that Greenplum Package Manager installation files for extension packages might release outside of
standard product release cycles. Current packages are available from Pivotal Network. Information about
package compatibility is the Greenplum Database Release Notes.

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-c | --clean

Reconciles the package state of the cluster to match the state of the master host. Running
this option after a failed or partial install/uninstall ensures that the package installation state is
consistent across the cluster.

-d master_data_directory

The master data directory. If not specified, the value set for $MASTER_DATA_DIRECTORY will be
used.

https://network.pivotal.io
https://network.pivotal.io

Management Utility Reference Utility Guide

111

-i package | --install=package

Installs the given package. This includes any pre/post installation steps and installation of any
dependencies.

--migrate GPHOME_old GPHOME_new

Migrates packages from a separate $GPHOME. Carries over packages from one version of
Greenplum Database to another.

For example: gppkg --migrate /usr/local/greenplum-db-4.3.14.0 /usr/local/
greenplum-db-4.3.15.0

When migrating packages, these requirements must be met.

• At least the master instance of the destination Greenplum Database must be started
(the instance installed in GPHOME_new). Before running the gppkg command start the
Greenplum Database master with the command gpstart -m.

• Run the gppkg utility from the GPHOME_new installation. The migration destination
installation directory.

-q | --query query_option

Provides information specified by query_option about the installed packages. Only one
query_option can be specified at a time. The following table lists the possible values for
query_option. <package_file> is the name of a package.

Table 4: Query Options for gppkg

query_option Returns

<package_file> Whether the specified package is installed.

--info <package_file> The name, version, and other information
about the specified package.

--list <package_file> The file contents of the specified package.

--all List of all installed packages.

-r name-version | --remove=name-version

Removes the specified package.

-u package | --update=package

Updates the given package.

Warning: The process of updating a package includes removing all previous
versions of the system objects related to the package. For example, previous
versions of shared libraries are removed. After the update process, a database
function will fail when it is called if the function references a package file that has
been removed.

--version (show utility version)

Displays the version of this utility.

-v | --verbose

Sets the logging level to verbose.

-? | -h | --help

Displays the online help.

Management Utility Reference Utility Guide

112

gprecoverseg
Recovers a primary or mirror segment instance that has been marked as down (if mirroring is enabled).

Synopsis
gprecoverseg [-p new_recover_host[,...]] | -i recover_config_file |
 -s filespace_config_file] [-d master_data_directory]
 [-B parallel_processes] [-F] [-a] [-q] [-l logfile_directory]

gprecoverseg -r

gprecoverseg -o output_recover_config_file | -S output_filespace_config_file
 [-p new_recover_host[,...]]

gprecoverseg -?

gprecoverseg --version

Description
In a system with mirrors enabled, the gprecoverseg utility reactivates a failed segment instance and
identifies the changed database files that require resynchronization. Once gprecoverseg completes this
process, the system goes into resyncronizing mode until the recovered segment is brought up to date. The
system is online and fully operational during resyncronization.

During an incremental recovery (the -F option is not specified), if gprecoverseg detects a segment
instance with mirroring disabled in a system with mirrors enabled, the utility reports that mirroring is
disabled for the segment, does not attempt to recover that segment instance, and continues the recovery
process.

A segment instance can fail for several reasons, such as a host failure, network failure, or disk failure.
When a segment instance fails, its status is marked as down in the Greenplum Database system catalog,
and its mirror is activated in change tracking mode. In order to bring the failed segment instance back into
operation again, you must first correct the problem that made it fail in the first place, and then recover the
segment instance in Greenplum Database using gprecoverseg.

Segment recovery using gprecoverseg requires that you have an active mirror to recover from. For
systems that do not have mirroring enabled, or in the event of a double fault (a primary and mirror pair both
down at the same time) — you must take manual steps to recover the failed segment instances and then
perform a system restart to bring the segments back online. For example, this command restarts a system.

gpstop -r

By default, a failed segment is recovered in place, meaning that the system brings the segment back online
on the same host and data directory location on which it was originally configured. In this case, use the
following format for the recovery configuration file (using -i).

filespaceOrder=[filespace1_fsname[, filespace2_fsname[, ...]]
<failed_host_address>:<port>:<data_directory>

In some cases, this may not be possible (for example, if a host was physically damaged and cannot be
recovered). In this situation, gprecoverseg allows you to recover failed segments to a completely new host
(using -p), on an alternative data directory location on your remaining live segment hosts (using -s), or by
supplying a recovery configuration file (using -i) in the following format. The word SPACE indicates the
location of a required space. Do not add additional spaces.

filespaceOrder=[filespace1_fsname[, filespace2_fsname[, ...]]

Management Utility Reference Utility Guide

113

<failed_host_address>:<port>:<data_directory>SPACE
<recovery_host_address>:<port>:<replication_port>:<data_directory>
[:<fselocation>:...]

See the -i option below for details and examples of a recovery configuration file.

The gp_segment_configuration, pg_filespace, and pg_filespace_entry system catalog tables
can help you determine your current segment configuration so that you can plan your mirror recovery
configuration. For example, run the following query:

=# SELECT dbid, content, address, port,
 replication_port, fselocation as datadir
 FROM gp_segment_configuration, pg_filespace_entry
 WHERE dbid=fsedbid
 ORDER BY dbid;

The new recovery segment host must be pre-installed with the Greenplum Database software and
configured exactly the same as the existing segment hosts. A spare data directory location must exist on
all currently configured segment hosts and have enough disk space to accommodate the failed segments.

The recovery process marks the segment as up again in the Greenplum Database system catalog, and
then initiates the resyncronization process to bring the transactional state of the segment up-to-date with
the latest changes. The system is online and available during resyncronization. To check the status of the
resyncronization process run:

gpstate -m

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to recover in parallel. If not specified, the utility will start up to four
parallel processes depending on how many segment instances it needs to recover.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-F (full recovery)

Optional. Perform a full copy of the active segment instance in order to recover the failed
segment. The default is to only copy over the incremental changes that occurred while the
segment was down.

-i recover_config_file

Specifies the name of a file with the details about failed segments to recover. Each line in the
file is in the following format. The word SPACE indicates the location of a required space. Do
not add additional spaces.

filespaceOrder=[filespace1_fsname[, filespace2_fsname[, ...]]
<failed_host_address>:<port>:<data_directory>SPACE
<recovery_host_address>:<port>:<replication_port>:<data_directory>
[:<fselocation>:...]

Comments

Lines beginning with # are treated as comments and ignored.

Filespace Order

Management Utility Reference Utility Guide

114

The first comment line that is not a comment specifies filespace ordering. This line starts
with filespaceOrder= and is followed by list of filespace names delimited by a colon. For
example:

filespaceOrder=raid1:raid2

The default pg_system filespace should not appear in this list. The list should be left empty
on a system with no filespaces other than the default pg_system filespace. For example:

filespaceOrder=

Segments to Recover

Each line after the first specifies a segment to recover. This line can have one of two formats.
In the event of in-place recovery, enter one group of colon delimited fields in the line. For
example:

failedAddress:failedPort:failedDataDirectory

For recovery to a new location, enter two groups of fields separated by a space in the line.
The required space is indicated by SPACE. Do not add additional spaces.

failedAddress:failedPort:failedDataDirectorySPACEnewAddress:
newPort:newReplicationPort:newDataDirectory

On a system with additional filespaces, the second group of fields is expected to be followed
with a list of the corresponding filespace locations separated by additional colons. For
example, on a system with two additional filespaces, enter two additional directories in the
second group, as follows. The required space is indicated by SPACE. Do not add additional
spaces.

failedAddress:failedPort:failedDataDirectorySPACEnewAddress:
newPort:newReplicationPort:newDataDirectory:location1:location2

Examples

In-place recovery of a single mirror

filespaceOrder=
sdw1-1:50001:/data1/mirror/gpseg16

Recovery of a single mirror to a new host

filespaceOrder=
sdw1-1:50001:/data1/mirror/gpseg16SPACEsdw4-1:
50001:51001:/data1/recover1/gpseg16

Recovery of a single mirror to a new host on a system with an extra filespace

filespaceOrder=
fs1sdw1-1:50001:/data1/mirror/gpseg16SPACEsdw4-1:
50001:51001:/data1/recover1/gpseg16:/data1/fs1/gpseg16

Obtaining a Sample File

You can use the -o option to output a sample recovery configuration file to use as a starting
point.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

Management Utility Reference Utility Guide

115

-o output_recover_config_file

Specifies a file name and location to output a sample recovery configuration file. The output
file lists the currently invalid segments and their default recovery location in the format
that is required by the -i option. Use together with the -p option to output a sample file for
recovering on a different host. This file can be edited to supply alternate recovery locations if
needed.

-p new_recover_host[,...]

Specifies a spare host outside of the currently configured Greenplum Database array
on which to recover invalid segments. In the case of multiple failed segment hosts, you
can specify a comma-separated list. The spare host must have the Greenplum Database
software installed and configured, and have the same hardware and OS configuration as
the current segment hosts (same OS version, locales, gpadmin user account, data directory
locations created, ssh keys exchanged, number of network interfaces, network interface
naming convention, and so on.).

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

-r (rebalance segments)

After a segment recovery, segment instances may not be returned to the preferred role
that they were given at system initialization time. This can leave the system in a potentially
unbalanced state, as some segment hosts may have more active segments than is optimal
for top system performance. This option rebalances primary and mirror segments by
returning them to their preferred roles. All segments must be valid and synchronized before
running gprecoverseg -r. If there are any in progress queries, they will be cancelled and
rolled back.

-s filespace_config_file

Specifies the name of a configuration file that contains file system locations on the currently
configured segment hosts where you can recover failed segment instances. The filespace
configuration file is in the format of:

pg_system=default_fselocation
filespace1_name=filespace1_fselocation
filespace2_name=filespace2_fselocation
...

If your system does not have additional filespaces configured, this file will only have one
location (for the default filespace, pg_system). These file system locations must exist on
all segment hosts in the array and have sufficient disk space to accommodate recovered
segments.

Note: The -s and -S options are only used when you recover to existing hosts in the cluster.
You cannot use these options when you recover to a new host. To recover to a new host, use
the -i and -o options.

-S output_filespace_config_file

Specifies a file name and location to output a sample filespace configuration file in the format
that is required by the -s option. This file should be edited to supply the correct alternate
filespace locations.

-v (verbose)

Sets logging output to verbose.

--version (version)

Displays the version of this utility.

-? (help)

Management Utility Reference Utility Guide

116

Displays the online help.

Examples
Recover any failed segment instances in place:

$ gprecoverseg

Rebalance your Greenplum Database system after a recovery by resetting all segments to their preferred
role. First check that all segments are up and synchronized.

$ gpstate -m
$ gprecoverseg -r

Recover any failed segment instances to a newly configured spare segment host:

$ gprecoverseg -i recover_config_file

Output the default recovery configuration file:

$ gprecoverseg -o /home/gpadmin/recover_config_file

See Also
gpstart, gpstop

Management Utility Reference Utility Guide

117

gpreload
Reloads Greenplum Database table data sorting the data based on specified columns.

Synopsis
gpreload -d database [-p port] {-t | --table-file} path_to_file [-a]

gpreload -h

gpreload --version

Description
The gpreload utility reloads table data with column data sorted. For tables that were created with the
table storage option APPENDONLY=TRUE and compression enabled, reloading the data with sorted data can
improve table compression. You specify a list of tables to be reloaded the table column to be sorted in a
text file.

Compression is improved by sorting data when the data in the column has a relatively low number of
distinct values when compared to the total number of rows.

For a table being reloaded, the order of the columns to be sorted might affect compression. The columns
with fewest distinct values should be listed first. For example, listing state then city would generally result in
better compression than listing city then state.

public.cust_table: state, city
public.cust_table: city, state

For information about the format of the file used with gpreload, see the --table-file option.

Notes
To improve reload performance, indexes on tables being reloaded should be removed before reloading the
data.

Running the ANALYZE command after reloading table data might query performance because of a change
in the data distribution of the reloaded data.

Options
-a (do not prompt)

Optional. If specified, the gpreload utility does not prompt the user for confirmation.

-d database

The database that contains the tables to be reloaded. The gpreload utility connects to the
database as the user running the utility.

-p port

The Greenplum Database master port. If not specified, the value of the PGPORT environment
variable is used. If the value is not available, an error is returned.

{-t | --table-file } path_to_file

The location and name of file containing list of schema qualified table names to reload and
the column names to reorder from the Greenplum Database. Only user defined tables are
supported. Views or system catalog tables are not supported.

If indexes are defined on table listed in the file, gpreload prompts to continue.

Management Utility Reference Utility Guide

118

Each line specifies a table name and the list of columns to sort. This is the format of each line
in the file:

schema.table_name: column [desc] [, column2 [desc] ...]

The table name is followed by a colon (:) and then at least one column name. If you specify
more than one column, separate the column names with a comma. The columns are sorted
in ascending order. Specify the keyword desc after the column name to sort the column in
descending order.

Wildcard characters are not supported.

If there are errors in the file, gpreload reports the first error and exits. No data is reloaded.

The following example reloads three tables:

public.clients: region, state, rep_id desc
public.merchants: region, state
test.lineitem: group, assy, whse

In the first table public.clients, the data in the rep_id column is sorted in descending
order. The data in the other columns are sorted in ascending order.

--version (show utility version)

Displays the version of this utility.

-? (help)

Displays the online help.

Example
This example command reloads the tables in the database mytest that are listed in the file data-
tables.txt.

gpreload -d mytest --table-file data-tables.txt

See Also
CREATE TABLE in the Greenplum Database Reference Guide

Management Utility Reference Utility Guide

119

gpscp
Copies files between multiple hosts at once.

Synopsis
gpscp { -f hostfile_gpssh | -h hostname [-h hostname ...] }
 [-J character] [-v] [[user@]hostname:]file_to_copy [...]
 [[user@]hostname:]copy_to_path

gpscp -?

gpscp --version

Description
The gpscp utility allows you to copy one or more files from the specified hosts to other specified hosts in
one command using SCP (secure copy). For example, you can copy a file from the Greenplum Database
master host to all of the segment hosts at the same time.

To specify the hosts involved in the SCP session, use the -f option to specify a file containing a list of host
names, or use the -h option to name single host names on the command-line. At least one host name (-
h) or a host file (-f) is required. The -J option allows you to specify a single character to substitute for the
hostname in the copy from and copy to destination strings. If -J is not specified, the default substitution
character is an equal sign (=). For example, the following command will copy .bashrc from the local host
to /home/gpadmin on all hosts named in hostfile_gpssh:

gpscp -f hostfile_gpssh .bashrc =:/home/gpadmin

If a user name is not specified in the host list or with user@ in the file path, gpscp will copy files as the
currently logged in user. To determine the currently logged in user, do a whoami command. By default,
gpscp goes to $HOME of the session user on the remote hosts after login. To ensure the file is copied to the
correct location on the remote hosts, it is recommended that you use absolute paths.

Before using gpscp, you must have a trusted host setup between the hosts involved in the SCP session.
You can use the utility gpssh-exkeys to update the known host files and exchange public keys between
hosts if you have not done so already.

Options
-f hostfile_gpssh

Specifies the name of a file that contains a list of hosts that will participate in this SCP
session. The syntax of the host file is one host per line as follows:

<hostname>

-h hostname

Specifies a single host name that will participate in this SCP session. You can use the -h
option multiple times to specify multiple host names.

-J character

The -J option allows you to specify a single character to substitute for the hostname in the
copy from and copy to destination strings. If -J is not specified, the default substitution
character is an equal sign (=).

-v (verbose mode)

Optional. Reports additional messages in addition to the SCP command output.

Management Utility Reference Utility Guide

120

file_to_copy

Required. The file name (or absolute path) of a file that you want to copy to other hosts (or
file locations). This can be either a file on the local host or on another named host.

copy_to_path

Required. The path where you want the file(s) to be copied on the named hosts. If an
absolute path is not used, the file will be copied relative to $HOME of the session user. You
can also use the equal sign '=' (or another character that you specify with the -J option) in
place of a hostname. This will then substitute in each host name as specified in the supplied
host file (-f) or with the -h option.

-? (help)

Displays the online help.

--version

Displays the version of this utility.

Examples
Copy the file named installer.tar to / on all the hosts in the file hostfile_gpssh.

gpscp -f hostfile_gpssh installer.tar =:/

Copy the file named myfuncs.so to the specified location on the hosts named sdw1 and sdw2:

gpscp -h sdw1 -h sdw2 myfuncs.so =:/usr/local/greenplum-db/lib

See Also
gpssh, gpssh-exkeys

Management Utility Reference Utility Guide

121

gpseginstall
Installs Greenplum Database on segment hosts.

Synopsis
gpseginstall -f hostfile [-u gpdb_admin_user] [-p password]
 [-c u|p|c|s|E|e|l|v]

gpseginstall --help

Description
The gpseginstall utility provides a simple way to quickly install Greenplum Database on segment hosts
that you specify in a host list file. The utility does not install or update Greenplum Database on the master
host. You can run gpseginstall as root or as a non-root user. gpseginstall does not perform database
initialization. See gpinitsystem for more information about initializing Greenplum Database.

When run as root, gpseginstall default actions are to add a system user (default is gpadmin), create a
password (default is changeme), and deploy and install Greenplum Database on segment hosts. To do this,
gpseginstall locates the current Greenplum Database binaries on the master from the installation path
in the current user's environment variables ($GPHOME). It compresses Greenplum Database software into a
tar.gz file and performs an MD5 checksum to verify file integrity.

Then, it copies Greenplum Database to the segment hosts, installs (decompresses) Greenplum Database,
and changes the ownership of the Greenplum Database installation to the system user you specify with
the -u option. Lastly, it exchanges keys between all Greenplum Database hosts as both root and as the
system user you specify with the -u option. gpseginstall also perform a user limit check and verifies the
version number of Greenplum Database on all the segments.

If you run gpseginstall as a non-root user, gpseginstall only compresses, copies, and installs Greenplum
Database on segment hosts. It can also exchanges keys between Greenplum Database hosts for the
current system user, and verifies the version number of Greenplum Database on all the segments.

Options
-c | --commands option_list

Optional. This allows you to customize gpseginstall actions. Note that these command
options are executed by default if you do not specify the -c option in the gpseginstall
syntax.

• u: Adds a system user. (root only)

• p: Changes the password for a system user. (root only)

• s: Compresses, copies, decompresses (installs) Greenplum Database on all segments.

• c: Changes the ownership of the Greenplum Database installation directory on the
segment hosts. (root only)

• E: Exchange keys between Greenplum Database master and segment hosts for the root
user. (root only)

• e: Exchange keys between Greenplum Database master and segment hosts for the non-
root system user.

• l: (Linux only) Checks and modifies the user limits configuration file (/etc/security/
limits.conf file) when adding a new user to segment hosts. (root only)

• v: Verifies the version of Greenplum Database running on all segments. gpseginstall
checks the version number of the Greenplum Database installation referenced by the
$GPHOME environment variable and symbolic link to the installation directory. An error

Management Utility Reference Utility Guide

122

occurs if there is a version number mismatch or the Greenplum Database installation
directory cannot be found.

-f | --file hostfile

Required. This specifies the file that lists the segment hosts onto which you want to install
Greenplum Database.

The host list file must have one host name per line and includes a host name for each
segment host in your Greenplum system. Make sure there are no blank lines or extra spaces.
If a host has multiple configured host names, use only one host name per host. For example:

sdw1-1
sdw2-1
sdw3-1
sdw4-1

If available, you can use the same gpssh-exkeys host list file you used to exchange keys
between Greenplum Database hosts.

-p | --password password

Optional. Sets the password for the user you specify with the -u option. The default password
is changeme. This option is only available when you run gpsetinstall as root.

Recommended security best practices:

• Always use passwords.

• Do not use default passwords.

• Change default passwords immediately after installation.

-u | --user user

Optional. This specifies the system user. This user is also the Greenplum Database
administrative user. This user owns Greenplum Database installation and administers the
database. This is also the user under which Greenplum Database is started/initialized. This
option is only available when you run gpseginstall as root. The default is gpadmin.

--help (help)

Displays the online help.

Examples
As root, install a Greenplum Database on all segments, leave the system user as the default (gpadmin)
and set the gpadmin password to secret123:

gpseginstall -f my_host_list_file -p secret123

As a non-root user, compress and copy Greenplum Database binaries to all segments (as gpadmin):

$ gpseginstall -f host_file

As root, add a user (gpadmin2), set the password for the user (secret1234), exchange keys between
hosts as the new user, check user limits, and verify version numbers, but do not change ownership of
Greenplum binaries, compress/copy/ install Greenplum Database on segments, or exchange keys as root.

$ gpseginstall -f host_file -u gpadmin2 -p secret1234 -c upelv

See Also
gpinitsystem, gpssh-exkeys

Management Utility Reference Utility Guide

123

gpssh
Provides SSH access to multiple hosts at once.

Synopsis
gpssh { -f hostfile_gpssh | - h hostname [-h hostname ...] } [-s] [-e]
 [-d seconds] [-t multiplier] [-v]
 [bash_command]

gpssh -?

gpssh --version

Description
The gpssh utility allows you to run bash shell commands on multiple hosts at once using SSH (secure
shell). You can execute a single command by specifying it on the command-line, or omit the command to
enter into an interactive command-line session.

To specify the hosts involved in the SSH session, use the -f option to specify a file containing a list of host
names, or use the -h option to name single host names on the command-line. At least one host name (-
h) or a host file (-f) is required. Note that the current host is not included in the session by default — to
include the local host, you must explicitly declare it in the list of hosts involved in the session.

Before using gpssh, you must have a trusted host setup between the hosts involved in the SSH session.
You can use the utility gpssh-exkeys to update the known host files and exchange public keys between
hosts if you have not done so already.

If you do not specify a command on the command-line, gpssh will go into interactive mode. At the gpssh
command prompt (=>), you can enter a command as you would in a regular bash terminal command-line,
and the command will be executed on all hosts involved in the session. To end an interactive session,
press CTRL+D on the keyboard or type exit or quit.

If a user name is not specified in the host file, gpssh will execute commands as the currently logged in
user. To determine the currently logged in user, do a whoami command. By default, gpssh goes to $HOME
of the session user on the remote hosts after login. To ensure commands are executed correctly on all
remote hosts, you should always enter absolute paths.

If you encounter network timeout problems when using gpssh, you can use -d and -t options or set
parameters in the gpssh.conf file to control the timing that gpssh uses when validating the initial ssh
connection. For information about the configuration file, see gpssh Configuration File.

Options
bash_command

A bash shell command to execute on all hosts involved in this session (optionally enclosed in
quotes). If not specified, gpssh starts an interactive session.

-d (delay) seconds

Optional. Specifies the time, in seconds, to wait at the start of a gpssh interaction with ssh.
Default is 0.05. This option overrides the delaybeforesend value that is specified in the
gpssh.conf configuration file.

Increasing this value can cause a long wait time during gpssh startup.

-e (echo)

Optional. Echoes the commands passed to each host and their resulting output while running
in non-interactive mode.

Management Utility Reference Utility Guide

124

-f hostfile_gpssh

Specifies the name of a file that contains a list of hosts that will participate in this SSH
session. The host name is required, and you can optionally specify an alternate user name
and/or SSH port number per host. The syntax of the host file is one host per line as follows:

[username@]hostname[:ssh_port]

-h hostname

Specifies a single host name that will participate in this SSH session. You can use the -h
option multiple times to specify multiple host names.

-s

Optional. If specified, before executing any commands on the target host, gpssh sources the
file greenplum_path.sh in the directory specified by the $GPHOME environment variable.

This option is valid for both interactive mode and single command mode.

-t multiplier

Optional. A decimal number greater than 0 (zero) that is the multiplier for the timeout
that gpssh uses when validating the ssh prompt. Default is 1. This option overrides the
prompt_validation_timeout value that is specified in the gpssh.conf configuration file.

Increasing this value has a small impact during gpssh startup.

-v (verbose mode)

Optional. Reports additional messages in addition to the command output when running in
non-interactive mode.

--version

Displays the version of this utility.

-? (help)

Displays the online help.

gpssh Configuration File
The gpssh.conf file contains parameters that let you adjust the timing that gpssh uses when validating
the initial ssh connection. These parameters affect the network connection before the gpssh session
executes commands with ssh. The location of the file is specified by the environment variable
MASTER_DATA_DIRECTORY. If the environment variable is not defined or the gpssh.conf file does not exist,
gpssh uses the default values or the values set with the -d and -t options. For information about the
environment variable, see the Greenplum Database Reference Guide.

The gpssh.conf file is a text file that consists of a [gpssh] section and parameters. On a line, the #
(pound sign) indicates the start of a comment. This is an example gpssh.conf file.

[gpssh]
delaybeforesend = 0.05
prompt_validation_timeout = 1.0
sync_retries = 5

These are the gpssh.conf parameters.

delaybeforesend = seconds

Specifies the time, in seconds, to wait at the start of a gpssh interaction with ssh. Default is
0.05. Increasing this value can cause a long wait time during gpssh startup. The -d option
overrides this parameter.

prompt_validation_timeout = multiplier

Management Utility Reference Utility Guide

125

A decimal number greater than 0 (zero) that is the multiplier for the timeout that gpssh uses
when validating the ssh prompt. Increasing this value has a small impact during gpssh
startup. Default is 1. The -t option overrides this parameter.

sync_retries = attempts

A non-negative integer that specifies the maximum number of times that gpssh attempts
to connect to a remote Greenplum Database host. The default is 3. If the value is 0, gpssh
returns an error if the initial connection attempt fails. Increasing the number of attempts
also increases the time between retry attempts. This parameter cannot be configured with a
command-line option.

The -t option also affects the time between retry attempts.

Increasing this value can compensate for slow network performance or segment host
performance issues such as heavy CPU or I/O load. However, when a connection cannot be
established, an increased value also increases the delay when an error is retuned.

Examples
Start an interactive group SSH session with all hosts listed in the file hostfile_gpssh:

$ gpssh -f hostfile_gpssh

At the gpssh interactive command prompt, run a shell command on all the hosts involved in this session.

=> ls -a /data/primary/*

Exit an interactive session:

=> exit
=> quit

Start a non-interactive group SSH session with the hosts named sdw1 and sdw2 and pass a file containing
several commands named command_file to gpssh:

$ gpssh -h sdw1 -h sdw2 -v -e < command_file

Execute single commands in non-interactive mode on hosts sdw2 and localhost:

$ gpssh -h sdw2 -h localhost -v -e 'ls -a /data/primary/*'
$ gpssh -h sdw2 -h localhost -v -e 'echo $GPHOME'
$ gpssh -h sdw2 -h localhost -v -e 'ls -1 | wc -l'

See Also
gpssh-exkeys, gpscp

Management Utility Reference Utility Guide

126

gpssh-exkeys
Exchanges SSH public keys between hosts.

Synopsis
gpssh-exkeys -f hostfile_exkeys | - h hostname [-h hostname ...]

gpssh-exkeys -e hostfile_exkeys -x hostfile_gpexpand

gpssh-exkeys -?

gpssh-exkeys --version

Description
The gpssh-exkeys utility exchanges SSH keys between the specified host names (or host addresses).
This allows SSH connections between Greenplum hosts and network interfaces without a password
prompt. The utility is used to initially prepare a Greenplum Database system for password-free SSH
access, and also to add additional ssh keys when expanding a Greenplum Database system.

To specify the hosts involved in an initial SSH key exchange, use the -f option to specify a file containing
a list of host names (recommended), or use the -h option to name single host names on the command-
line. At least one host name (-h) or a host file is required. Note that the local host is included in the key
exchange by default.

To specify new expansion hosts to be added to an existing Greenplum Database system, use the -e and
-x options. The -e option specifies a file containing a list of existing hosts in the system that already have
SSH keys. The -x option specifies a file containing a list of new hosts that need to participate in the SSH
key exchange.

Keys are exchanged as the currently logged in user. You should perform the key exchange process twice:
once as root and once as the gpadmin user (the user designated to own your Greenplum Database
installation). The Greenplum Database management utilities require that the same non-root user be
created on all hosts in the Greenplum Database system, and the utilities must be able to connect as that
user to all hosts without a password prompt.

The gpssh-exkeys utility performs key exchange using the following steps:

• Creates an RSA identification key pair for the current user if one does not already exist. The public key
of this pair is added to the authorized_keys file of the current user.

• Updates the known_hosts file of the current user with the host key of each host specified using the -h,
-f, -e, and -x options.

• Connects to each host using ssh and obtains the authorized_keys, known_hosts, and id_rsa.pub
files to set up password-free access.

• Adds keys from the id_rsa.pub files obtained from each host to the authorized_keys file of the
current user.

• Updates the authorized_keys, known_hosts, and id_rsa.pub files on all hosts with new host
information (if any).

Options
-e hostfile_exkeys

When doing a system expansion, this is the name and location of a file containing all
configured host names and host addresses (interface names) for each host in your current
Greenplum system (master, standby master and segments), one name per line without blank

Management Utility Reference Utility Guide

127

lines or extra spaces. Hosts specified in this file cannot be specified in the host file used with
-x.

-f hostfile_exkeys

Specifies the name and location of a file containing all configured host names and host
addresses (interface names) for each host in your Greenplum system (master, standby
master and segments), one name per line without blank lines or extra spaces.

-h hostname

Specifies a single host name (or host address) that will participate in the SSH key exchange.
You can use the -h option multiple times to specify multiple host names and host addresses.

--version

Displays the version of this utility.

-x hostfile_gpexpand

When doing a system expansion, this is the name and location of a file containing all
configured host names and host addresses (interface names) for each new segment host you
are adding to your Greenplum system, one name per line without blank lines or extra spaces.
Hosts specified in this file cannot be specified in the host file used with -e.

-? (help)

Displays the online help.

Examples
Exchange SSH keys between all host names and addresses listed in the file hostfile_exkeys:

$ gpssh-exkeys -f hostfile_exkeys

Exchange SSH keys between the hosts sdw1, sdw2, and sdw3:

$ gpssh-exkeys -h sdw1 -h sdw2 -h sdw3

Exchange SSH keys between existing hosts sdw1, sdw2, and sdw3, and new hosts sdw4 and sdw5 as part
of a system expansion operation:

$ cat hostfile_exkeys
mdw
mdw-1
mdw-2
smdw
smdw-1
smdw-2
sdw1
sdw1-1
sdw1-2
sdw2
sdw2-1
sdw2-2
sdw3
sdw3-1
sdw3-2
$ cat hostfile_gpexpand
sdw4
sdw4-1
sdw4-2
sdw5
sdw5-1
sdw5-2
$ gpssh-exkeys -e hostfile_exkeys -x hostfile_gpexpand

Management Utility Reference Utility Guide

128

See Also
gpssh, gpscp

Management Utility Reference Utility Guide

129

gpstart
Starts a Greenplum Database system.

Synopsis
gpstart [-d master_data_directory] [-B parallel_processes] [-R]
 [-m] [-y] [-a] [-t timeout_seconds] [-l logfile_directory]
 [-v | -q]

gpstart -? | -h | --help

gpstart --version

Description
The gpstart utility is used to start the Greenplum Database server processes. When you start a
Greenplum Database system, you are actually starting several postgres database server listener
processes at once (the master and all of the segment instances). The gpstart utility handles the startup of
the individual instances. Each instance is started in parallel.

The first time an administrator runs gpstart, the utility creates a hosts cache file named .gphostcache
in the user's home directory. Subsequently, the utility uses this list of hosts to start the system more
efficiently. If new hosts are added to the system, you must manually remove this file from the gpadmin
user's home directory. The utility will create a new hosts cache file at the next startup.

Before you can start a Greenplum Database system, you must have initialized the system using
gpinitsystem first.

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to start in parallel. If not specified, the utility will start up to 64
parallel processes depending on how many segment instances it needs to start.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m (master only)

Optional. Starts the master instance only, which may be useful for maintenance tasks. This
mode only allows connections to the master in utility mode. For example:

PGOPTIONS='-c gp_session_role=utility' psql

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

-R (restricted mode)

Starts Greenplum Database in restricted mode (only database superusers are allowed to
connect).

Management Utility Reference Utility Guide

130

-t timeout_seconds

Specifies a timeout in seconds to wait for a segment instance to start up. If a segment
instance was shutdown abnormally (due to power failure or killing its postgres database
listener process, for example), it may take longer to start up due to the database recovery
and validation process. If not specified, the default timeout is 60 seconds.

-v (verbose output)

Displays detailed status, progress and error messages output by the utility.

-y (do not start standby master)

Optional. Do not start the standby master host. The default is to start the standby master host
and synchronization process.

-? | -h | --help (help)

Displays the online help.

--version (show utility version)

Displays the version of this utility.

Examples
Start a Greenplum Database system:

gpstart

Start a Greenplum Database system in restricted mode (only allow superuser connections):

gpstart -R

Start the Greenplum master instance only and connect in utility mode:

gpstart -m PGOPTIONS='-c gp_session_role=utility' psql

See Also
gpstop, gpinitsystem

Management Utility Reference Utility Guide

131

gpstate
Shows the status of a running Greenplum Database system.

Synopsis
gpstate [-d master_data_directory] [-B parallel_processes]
 [-s | -b | -Q | -e] [-m | -c] [-p] [-i] [-f] [-v | -q]
 [-l log_directory]

gpstate -? | -h | --help

Description
The gpstate utility displays information about a running Greenplum Database instance. There is additional
information you may want to know about a Greenplum Database system, since it is comprised of multiple
PostgreSQL database instances (segments) spanning multiple machines. The gpstate utility provides
additional status information for a Greenplum Database system, such as:

• Which segments are down.

• Master and segment configuration information (hosts, data directories, etc.).

• The ports used by the system.

• A mapping of primary segments to their corresponding mirror segments.

Options
-b (brief status)

Optional. Display a brief summary of the state of the Greenplum Database system. This is the
default option.

-B parallel_processes

The number of segments to check in parallel. If not specified, the utility will start up to 60
parallel processes depending on how many segment instances it needs to check.

-c (show primary to mirror mappings)

Optional. Display mapping of primary segments to their corresponding mirror segments.

-d master_data_directory

Optional. The master data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-e (show segments with mirror status issues)

Show details on primary/mirror segment pairs that have potential issues such as 1) the active
segment is running in change tracking mode, meaning a segment is down 2) the active
segment is in resynchronization mode, meaning it is catching up changes to the mirror 3)
a segment is not in its preferred role, for example a segment that was a primary at system
initialization time is now acting as a mirror, meaning you may have one or more segment
hosts with unbalanced processing load.

-f (show standby master details)

Display details of the standby master host if configured.

-i (show Greenplum Database version)

Display the Greenplum Database software version information for each instance.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

Management Utility Reference Utility Guide

132

-m (list mirrors)

Optional. List the mirror segment instances in the system, their current role, and
synchronization status.

-p (show ports)

List the port numbers used throughout the Greenplum Database system.

-q (no screen output)

Optional. Run in quiet mode. Except for warning messages, command output is not displayed
on the screen. However, this information is still written to the log file.

-Q (quick status)

Optional. Checks segment status in the system catalog on the master host. Does not poll the
segments for status.

-s (detailed status)

Optional. Displays detailed status information for the Greenplum Database system.

-v (verbose output)

Optional. Displays error messages and outputs detailed status and progress information.

-? | -h | --help (help)

Displays the online help.

Output Field Definitions
The following output fields are reported by gpstate -s for the master:

Table 5: gpstate output data for the master

Output Data Description

Master host host name of the master

Master postgres process ID PID of the master database listener process

Master data directory file system location of the master data directory

Master port port of the master postgres database listener
process

Master current role dispatch = regular operating mode

utility = maintenance mode

Greenplum array configuration type Standard = one NIC per host

Multi-Home = multiple NICs per host

Greenplum initsystem version version of Greenplum Database when system was
first initialized

Greenplum current version current version of Greenplum Database

Postgres version version of PostgreSQL that Greenplum Database is
based on

Greenplum mirroring status physical mirroring, SAN or none

Master standby host name of the standby master

Standby master state status of the standby master: active or passive

Management Utility Reference Utility Guide

133

The following output fields are reported by gpstate -s for each segment:

Table 6: gpstate output data for segments

Output Data Description

Hostname system-configured host name

Address network address host name (NIC name)

Datadir file system location of segment data directory

Port port number of segment postgres database
listener process

Current Role current role of a segment: Mirror or Primary

Preferred Role role at system initialization time: Mirror or Primary

Mirror Status status of a primary/mirror segment pair:

Synchronized = data is up to date on both

Resynchronization = data is currently being copied
from one to the other

Change Tracking = segment down and active
segment is logging changes

Change tracking data size when in Change Tracking mode, the size of
the change log file (may grow and shrink as
compression is applied)

Estimated total data to synchronize when in Resynchronization mode, the estimated
size of data left to syncronize

Data synchronized when in Resynchronization mode, the estimated
size of data that has already been syncronized

Estimated resync progress with mirror When in Resynchronization mode, the estimated
percentage of completion

Estimated resync end time when in Resynchronization mode, the estimated
time to complete

File postmaster.pid status of postmaster.pid lock file: Found or
Missing

PID from postmaster.pid file PID found in the postmaster.pid file

Lock files in /tmp a segment port lock file for its postgres process is
created in /tmp (file is removed when a segment
shuts down)

Active PID active process ID of a segment

Master reports status as segment status as reported in the system catalog:
Up or Down

Database status status of Greenplum Database to incoming
requests: Up, Down, or Suspended. A Suspended
state means database activity is temporarily paused
while a segment transitions from one state to
another.

Management Utility Reference Utility Guide

134

The following output fields are reported by gpstate -f for standby master replication status:

Table 7: gpstate output data for master replication

Output Data Description

Standby address hostname of the standby master

Standby data dir file system location of the standby master data
directory

Standby port port of the standby master postgres database
listener process

Standby PID process ID of the standby master

Standby status status of the standby master: Standby host passive

WAL Sender State write-ahead log (WAL) streaming state: streaming,
startup,backup, catchup

Sync state WAL sender syncronization state: sync

Sent Location WAL sender transaction log (xlog) record sent
location

Flush Location WAL receiver xlog record flush location

Replay Location standby xlog record replay location

Examples
Show detailed status information of a Greenplum Database system:

gpstate -s

Do a quick check for down segments in the master host system catalog:

gpstate -Q

Show information about mirror segment instances:

gpstate -m

Show information about the standby master configuration:

gpstate -f

Display the Greenplum software version information:

gpstate -i

See Also
gpstart, gplogfilter

Management Utility Reference Utility Guide

135

gpstop
Stops or restarts a Greenplum Database system.

Synopsis
gpstop [-d master_data_directory] [-B parallel_processes]
 [-M smart | fast | immediate] [-t timeout_seconds] [-r] [-y] [-a]
 [-l logfile_directory] [-v | -q]

gpstop -m [-d master_data_directory] [-y] [-l logfile_directory] [-v | -q]

gpstop -u [-d master_data_directory] [-l logfile_directory] [-v | -q]

gpstop --version

gpstop -? | -h | --help

Description
The gpstop utility is used to stop the database servers that comprise a Greenplum Database system.
When you stop a Greenplum Database system, you are actually stopping several postgres database
server processes at once (the master and all of the segment instances). The gpstop utility handles the
shutdown of the individual instances. Each instance is shutdown in parallel.

By default, you are not allowed to shut down Greenplum Database if there are any client connections to the
database. Use the -M fast option to roll back all in progress transactions and terminate any connections
before shutting down. If there are any transactions in progress, the default behavior is to wait for them to
commit before shutting down.

With the -u option, the utility uploads changes made to the master pg_hba.conf file or to runtime
configuration parameters in the master postgresql.conf file without interruption of service. Note that any
active sessions will not pickup the changes until they reconnect to the database.

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to stop in parallel. If not specified, the utility will start up to 64
parallel processes depending on how many segment instances it needs to stop.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m (master only)

Optional. Shuts down a Greenplum master instance that was started in maintenance mode.

-M fast (fast shutdown - rollback)

Fast shut down. Any transactions in progress are interrupted and rolled back.

-M immediate (immediate shutdown - abort)

Immediate shut down. Any transactions in progress are aborted.

Management Utility Reference Utility Guide

136

This mode kills all postgres processes without allowing the database server to complete
transaction processing or clean up any temporary or in-process work files.

-M smart (smart shutdown - warn)

Smart shut down. If there are active connections, this command fails with a warning. This is
the default shutdown mode.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to the
log file.

-r (restart)

Restart after shutdown is complete.

-t timeout_seconds

Specifies a timeout threshold (in seconds) to wait for a segment instance to shutdown. If a
segment instance does not shutdown in the specified number of seconds, gpstop displays a
message indicating that one or more segments are still in the process of shutting down and
that you cannot restart Greenplum Database until the segment instance(s) are stopped. This
option is useful in situations where gpstop is executed and there are very large transactions
that need to rollback. These large transactions can take over a minute to rollback and
surpass the default timeout period of 600 seconds.

-u (reload pg_hba.conf and postgresql.conf files only)

This option reloads the pg_hba.conf files of the master and segments and the runtime
parameters of the postgresql.conf files but does not shutdown the Greenplum
Database array. Use this option to make new configuration settings active after editing
postgresql.conf or pg_hba.conf. Note that this only applies to configuration parameters
that are designated as runtime parameters.

-v (verbose output)

Displays detailed status, progress and error messages output by the utility.

-y (do not stop standby master)

Do not stop the standby master process. The default is to stop the standby master.

-? | -h | --help (help)

Displays the online help.

--version (show utility version)

Displays the version of this utility.

Examples
Stop a Greenplum Database system in smart mode:

gpstop

Stop a Greenplum Database system in fast mode:

gpstop -M fast

Stop all segment instances and then restart the system:

gpstop -r

Stop a master instance that was started in maintenance mode:

gpstop -m

Management Utility Reference Utility Guide

137

Reload the postgresql.conf and pg_hba.conf files after making configuration changes but do not
shutdown the Greenplum Database array:

gpstop -u

See Also
gpstart

Management Utility Reference Utility Guide

138

gpsys1
Displays information about your operating system.

Synopsis
gpsys1 [-a | -m | -p]

gpsys1 -?

gpsys1 --version

Description
gpsys1 displays the platform and installed memory (in bytes) of the current host. For example:

linux 1073741824

Options
-a (show all)

Shows both platform and memory information for the current host. This is the default.

-m (show memory only)

Shows system memory installed in bytes.

-p (show platform only)

Shows the OS platform. Platform can be linux, darwin or sunos5.

-? (help)

Displays the online help.

--version

Displays the version of this utility.

Examples
Show information about the current host operating system:

gpsys1

See Also
gpcheckperf

Management Utility Reference Utility Guide

139

gptransfer
The gptransfer utility copies objects from databases in a source Greenplum Database system to
databases in a destination Greenplum Database system.

Synopsis
gptransfer
 { --full |
 { [-d database1 [-d database2 ...]] |
 [-t db.schema.table [-t db.schema1.table1 ...]] |
 [-f table-file [--partition-transfer
 | --partition-transfer-non-partition-target]]
 [-T db.schema.table [-T db.schema1.table1 ...]]
 [-F table-file] } }
 [--skip-existing | --truncate | --drop]
 [--analyze] [--validate=type] [-x] [--dry-run]
 [--schema-only]
 [--source-host=source_host [--source-port=source_port]
 [--source-user=source_user]]
 [--base-port=base_gpfdist_port]
 [--dest-host=dest_host --source-map-file=host_map_file
 [--dest-port=port] [--dest-user=dest_user]]
 [--dest-database=dest_database_name]
 [--batch-size=batch_size] [--sub-batch-size=sub_batch_size]
 [--timeout=seconds]
 [--max-line-length=length]
 [--work-base-dir=work_dir] [-l log_dir]
 [--format=[CSV|TEXT]]
 [--quote=character]
 [--no-final-count]

 [-v | --verbose]
 [-q | --quiet]
 [--gpfdist-verbose]
 [--gpfdist-very-verbose]
 [-a]

gptransfer --version

gptransfer -h | -? | --help

Description
The gptransfer utility copies database objects from a source Greenplum Database system to a
destination system. You can perform one of the following types of operations:

• Copy a Greenplum Database system with the --full option.

This option copies all user created databases in a source system to a different destination system. If
you specify the --full option, you must specify both a source and destination system. The destination
system cannot contain any user-defined databases, only the default databases postgres, template0,
and template1.

• Copy a set of user defined database tables to a destination system. The -f, and -t options copy a
specified set of user defined tables, table data, and re-creates the table indexes. The -d option copies
all user defined tables, table data, and re-creates the table indexes from a specified database.

If the destination system is the same as the source system, you must also specify a destination
database with the --dest-database option. When you specify a destination database, the source
database tables are copied into the specified destination database.

Management Utility Reference Utility Guide

140

For partitioned tables, you can specify the --partition-transfer or the --partition-transfer-
non-partition-target option with -f option to copy specific leaf child partitions of partitioned
tables from a source database. The leaf child partitions are the lowest level partitions of a partitioned
database. For the --partition-transfer option, the destination tables are leaf child partitions. For
the --partition-transfer-non-partition-target option, the destination tables are non-partitioned
tables.

If an invalid set of gptransfer options are specified, or if a specified source table or database does not
exist, gptransfer returns an error and quits. No data is copied.

To copy database objects between Greenplum Database systems gptransfer utility uses:

• The Greenplum Database utility gpfdist on the source database system. The gpfdists protocol is not
supported.

• Writable external tables on the source database system and readable external tables on the destination
database system.

• Named pipes that transfer the data between a writable external table and a readable external table.

When copying data into the destination system, it is redistributed on the Greenplum Database segments of
the destination system. This is the flow of data when gptransfer copies database data:

writable external table > gpfdist > named pipe > gpfdist > readable external table

For information about transferring data with gptransfer, see "Migrating Data with Gptransfer" in the
Greenplum Database Administrator Guide.

About Database, Schema, and Table Names
When you transfer an entire database, schema and table names in the database can contain only
alphanumeric characters and the underscore character (_). Also, Unicode characters are not supported.
The same naming restrictions apply when you specify a database, schema, or table as an option or in a
file.

Notes
The gptransfer utility efficiently transfers tables with large amounts of data. Because of the overhead
required to set up parallel transfers, the utility is not recommended for transferring tables with small
amounts of data. It might be more efficient to copy the schema and smaller tables to the destination
database using other methods, such as the SQL COPY command, and then use gptransfer to transfer
large tables in batches.

When copying database data between different Greenplum Database systems, gptransfer requires a text
file that lists all the source segment host names and IP addresses. Specify the name and location of the file
with the --source-map-file option. If the file is missing or not all segment hosts are listed, gptransfer
returns an error and quits. See the description of the option for file format information.

The source and destination Greenplum Database segment hosts need to be able to communicate with
each other. To ensure that the segment hosts can communicate, you can use a tool such as the Linux
netperf utility.

If a filespace has been created for a source Greenplum Database system, a corresponding filespace must
exist on the target system.

SSH keys must be exchanged between the two systems before using gptransfer. The gptransfer utility
connects to the source system with SSH to create the named pipes and start the gpfdist instances. You
can use the Greenplum Database gpssh-exkeys utility with a list of all the source and destination primary
hosts to exchange keys between Greenplum Database hosts.

Source and destination systems must be able to access the gptransfer work directory. The default
directory is the user's home directory. You can specify a different directory with the --work-base-dir
option.

Management Utility Reference Utility Guide

141

The gptransfer utility logs messages in the ~/gpAdminLogs directory on the master host. gptransfer
creates a log file with the name gptransfer_date.log and appends messages to it each time it runs on
that day. You can specify a different directory for the log file using the -l log_directory option.

Work directories named ~/gptransfer_process_id are created on segment hosts in the source cluster.
Log files for the gpfdist instances that gptransfer creates are in these directories. Adding the --
gpfdist-verbose or --gpfdist-very-verbose options to the gptransfer command line increases the
gpfdist logging level.

The gptransfer utility does not move configuration files such as postgres.conf and pg_hba.conf. You
must set up the destination system configuration separately.

The gptransfer utility does not move external objects such as Greenplum Database extensions, third
party jar files, and shared object files. You must install the external objects separately.

The gptransfer utility does not move dependent database objects unless you specify the --full option.
For example, if a table has a default value on a column that is a user-defined function, that function must
exist in the destination system database when using the -t, -d, or -f options.

If you move a set of database tables with the -d, -t, or -f option, and the destination table or database
does not exist, gptransfer creates it. The utility re-creates any indexes on tables before copying data.

If a table exists on the destination system and one of the options --skip-existing, --truncate, or --
drop is not specified, gptransfer returns an error and quits.

If an error occurs when during the process of copying a table, or table validation fails, gptransfer
continues copying the other specified tables. After gptransfer finishes, it displays a list of tables where
an error occurred, writes the names of tables that failed into a text file, and then prints the name of the file.
You can use this file with the gptransfer -f option to retry copying tables.

The name of the file that contains the list of tables where errors occurred is
failed_migrated_tables_yyyymmdd_hhmmss.txt. The yyyymmdd_hhmmss is a time stamp when the
gptransfer process was started. The file is created in the directory were gptransfer is executed.

After gptransfer completes copying database objects, the utility compares the row count of each table
copied to the destination databases with the table in the source database. The utility returns the validation
results for each table. You can disable the table row count validation by specifying the --no-final-count
option.

Note: If the number of rows do not match, the table is not added to the file that lists the tables
where transfer errors occurred.

The gp_external_max_segs server configuration parameter controls the number of segment instances
that can access a single gpfdist instance simultaneously. Setting a low value might affect gptransfer
performance. For information about the parameter, see the Greenplum Database Reference Guide.

Limitation for the Source and Destination Systems

If you are copying data from a system with a larger number of segments to a system with a fewer number
of segment hosts, then the total number of primary segments on the destination system must be greater
than or equal to the total number of segment hosts on the source system.

For example, a quarter rack V1 DCA has a total of 24 primary segments. The means the source side
cannot have more than 24 segment hosts (one and one-half racks).

When you copy data from a source Greenplum Database system with a larger number of primary segment
instances than on the destination system, the data transfer might be slower when compared to a transfer
where the source system has fewer segment instances than the destination system. The gptransfer utility
uses a different configuration of named pipes and gpfdist instances in the two situations.

Options
-a

Quiet mode, do not prompt the user for confirmation.

Management Utility Reference Utility Guide

142

--analyze

Run the ANALYZE command on non-system tables. The default is to not run the ANALYZE
command.

--base-port=base_gpfdist_port

Base port for gpfdist on source segment systems. If not specified, the default is 8000.

--batch-size=batch_size

Sets the maximum number of tables that gptransfer concurrently copies to the destination
database. If not specified, the default is 2. The maximum is 10.

Note: If the order of the transfer is important, specify a value of 1. The tables
are transferred sequentially based on the order specified in the -t and -f
options.

-d database

A source database to copy. This option can be specified multiple times to copy multiple
databases to the destination system. All the user defined tables and table data are copied to
the destination system.

A set of databases can be specified using the Python regular expression syntax. The regular
expression pattern must be enclosed in slashes (/RE_pattern/). If you use a regular
expression, the name must be enclosed in double quotes ("). This example -d "demo/.*/"
specifies all databases in the Greenplum Database installation that begin with demo.

Note: Note the following two examples for the -d option are equivalent. They
both specify a set of databases that begins with demo and ends with zero or
more digits.

-d "demo/[0-9]*/"
-d "/demo[0-9]*/"

If the source database does not exist, gptransfer returns an error and quits. If a destination
database does not exist a database is created.

Not valid with the --full, -f, -t, --partition-transfer, or --partition-transfer-non-
partition-target options.

Alternatively, specify the -t or -f option to copy a specified set of tables.

--delimiter=delim

Delimiter to use for writable external tables created by gptransfer. Specify a single ASCII
character that separates columns within each row of data. The default value is a comma (,).
If delim is a comma (,) or if this option is not specified, gptransfer uses the CSV format for
writable external tables. Otherwise, gptransfer uses the TEXT format.

If --delimiter, --format, and --quote options are not specified, these are settings for
writable external tables:

FORMAT 'CSV' (DELIMITER ',' QUOTE E'\001')

You can specify a delimiter character such as a non-printing character with the format
"\digits" (octal). A backslash followed by the octal value for the character. The octal format
must be enclosed in double quotes. This example specifies the octal character \001, the SOH
character:

--delimiter="\001"

--dest-database=dest_database_name

The database in the destination Greenplum Database system. If not specified, the source
tables are copied into a destination system database with the same name as the source
system database.

Management Utility Reference Utility Guide

143

This option is required if the source and destination Greenplum Database systems are the
same.

If destination database does not exist, it is created.

Not valid with the --full, --partition-transfer, or --partition-transfer-non-
partition-target options.

--dest-host=dest_host

Destination Greenplum Database hostname or IP address. If not specified, the default is the
host the system running gptransfer (127.0.0.1)

--dest-port=dest_port

Destination Greenplum Database port number, If not specified, the default is 5432.

--dest-user=dest_user

User ID that is used to connect to the destination Greenplum Database system. If not
specified, the default is the user gpadmin.

--drop

Specify this option to drop the table that is in the destination database if it already exists.
Before copying table data, gptransfer drops the table and creates it again.

At most, only one of the options can be specified --skip-existing, --truncate, or --drop.
If one of them is not specified and the table exists in the destination system, gptransfer
returns an error and quits.

Not valid with the --full, --partition-transfer, or --partition-transfer-non-
partition-target options.

--dry-run

When you specify this option, gptransfer generates a list of the migration operations that
would have been performed with the specified options. The data is not migrated.

The information is displayed at the command line and written to the log file.

-f table-file

The location and name of file containing list of fully qualified table names to copy from the
Greenplum Database source system. In the text file, you specify a single fully qualified table
per line (database.schema.table).

A set of tables can be specified using the Python regular expression syntax. See the -d
option for information about using regular expressions.

If the source table does not exist, gptransfer returns an error and quits. If the destination
database or table does not exist, it is created.

Only the table and table data are copied and indexes are re-created. Dependent objects are
not copied.

You cannot specify views, or system catalog tables. The --full option copies user defined
views.

If you specify the -d option to copy all the tables from a database, you cannot specify
individual tables from the database.

Not valid with the --full, -d, or -t options.

--partition-transfer (partitioned destination table)

Specify this option with the -f option to copy data from leaf child partition tables
of partitioned tables from a source database to the leaf child partition tables in a
destination database. The text file specified by the -f option contains a list of fully
qualified leaf child partition table names with this syntax.

src_db.src_schema.src_prt_tbl[, dst_db.dst_schema.dst_prt_tbl]

Management Utility Reference Utility Guide

144

Wildcard characters are not supported in the fully qualified table names. The
destination partitioned table must exist. If the destination leaf child partition table is
not specified in the file, gptransfer copies the data to the same fully qualified table
name (db_name.schema.table) in the destination Greenplum Database system. If
the source and destination Greenplum Database systems are the same, you must
specify a destination table where at least one of the following must be different
between the source and destination table: db_name, schema, or table.

If either the source or destination table is not a leaf child partition, the utility returns
an error and no data are transferred.

These characteristics must be the same for the partitioned table in the source and
destination database.

• Number of table columns and the order of the column data types (the source and
destination table names and table column names can be different)

• Partition level of the specified source and destination tables

• Partitioning criteria of the specified source and destination leaf child partitions and
child partitions above them in the hierarchy (partition type and partition column)

This option is not valid with these options: -d, --dest-database, --drop, -F, --
full, --schema-only, -T, -t.

Note: If a destination table is not empty or the data in the source
or destination table changes during a transfer operation (rows are
inserted or deleted), the table row count validation fails due to row count
mismatch.

If the destination table is not empty, you can specify the -truncate
option to truncate the table before the transfer operation.

You can specify the -x option to acquire exclusive locks on the tables
during a transfer operation.

--partition-transfer-non-partition-target (non-partitioned destination table)

Specify this option with the -f option to copy data from leaf child partition tables
of partitioned tables in a source database to non-partitioned tables in a destination
database. The text file specified by the -f option contains a list of fully qualified leaf
child partition table names in the source database and non-partitioned tables names
in the destination database with this syntax.

src_db.src_schema.src_part_tbl, dest_db.dest_schema.dest_tbl

Wildcard characters are not supported in the fully qualified table names. The
destination tables must exist, and both source and destination table names are
required in the file.

If a source table is not a leaf child partition table or a destination table is not a normal
(non-partitioned) table, the utility returns an error and no data are transferred.

If the source and destination Greenplum Database systems are the same, you must
specify a destination table where at least one of the following must be different
between the source and destination table: db_name, schema, or table.

For the partitioned table in the source database and the table in the destination
database, the number of table columns and the order of the column data types must
be the same (the source and destination table column names can be different).

The same destination table can be specified in the file for multiple source leaf child
partition tables that belong to a single partitioned table. Transferring data from source
leaf child partition tables that belong to different partitioned tables to a single non-
partitioned table is not supported.

Management Utility Reference Utility Guide

145

This option is not valid with these options: -d, --dest-database, --drop, -F, --
full, --schema-only, -T, -t, --truncate, --validate.

Note: If the data in the source or destination table changes during a
transfer operation (rows are inserted or deleted), the table row count
validation fails due to row count mismatch.

You can specify the -x option to acquire exclusive locks on the tables
during a transfer operation.

-F table-file

The location and name of file containing list of fully qualified table names to exclude from
transferring to the destination system. In the text file, you specify a single fully qualified table
per line.

A set of tables can be specified using the Python regular expression syntax. See the -d
option for information about using regular expressions.

The utility removes the excluded tables from the list of tables that are being transferred to the
destination database before starting the transfer. If excluding tables results in no tables being
transferred, the database or schema is not created in the destination system.

If a source table does not exist, gptransfer displays a warning.

Only the specified tables are excluded. To exclude dependent objects, you must explicitly
specify them.

You cannot specify views, or system catalog tables.

Not valid with the --full, --partition-transfer, or --partition-transfer-non-
partition-target options.

You can specify the --dry-run option to test the command. The -v option, displays and logs
the excluded tables.

--format=[CSV | TEXT]

Specify the format of the writable external tables that are created by gptransfer to transfer
data. Values are CSV for comma separated values, or TEXT for plain text. The default value is
CSV.

If the options --delimiter, --format, and --quote are not specified, these are default
settings for writable external tables:

FORMAT 'CSV' (DELIMITER ',' QUOTE E'\001')

If you specify TEXT, you must also specify a non-comma delimiter with the --
delimiter=delim option. These are settings for writable external tables:

FORMAT 'TEXT' (DELIMITER delim ESCAPE 'off')

--full

Full migration of a Greenplum Database source system to a destination system. You must
specify the options for the destination system, the --source-map-file option, the --dest-
host option, and if necessary, the other destination system options.

The --full option cannot be specified with the -t, -d, -f, --partition-transfer, or --
partition-transfer-non-partition-target options.

A full migration copies all database objects including, tables, indexes, views, users, roles,
functions, and resource queues for all user defined databases. The default databases,
postgres, template0 and template1 are not moved.

If a database exists in the destination system, besides the default postgres, template0 and
template1 databases, gptransfer returns an error and quits.

Note: The --full option is recommended only when the databases contain
a large number of tables with large amounts of data. Because of the overhead

Management Utility Reference Utility Guide

146

required to set up parallel transfers, the utility is not recommended when the
databases contain tables with small amounts of data. For more information, see
Notes.

--gpfdist-verbose

Set the logging level for gpfdist processes to verbose (-v). Cannot be specified with --
gpfdist-very-verbose.

The output is recorded in gpfdist log files in the ~/gptransfer_process_id directory on
segment hosts in the source Greenplum Database cluster.

--gpfdist-very-verbose

Set the logging level for gpfdist processes to very verbose (-V). Cannot be specified with --
gpfdist-verbose.

The output is recorded in gpfdist log files in the ~/gptransfer_process_id directory on
segment hosts in the source Greenplum Database cluster.

-l log_dir

Specify the gptransfer log file directory. If not specified, the default is ~/gpAdminLogs. This
directory is created on the master host in the source Greenplum cluster.

--max-line-length=length

Sets the maximum allowed data row length in bytes for the gpfdist utility. If not specified,
the default is 10485760. Valid range is 32768 (32K) to 268435456 (256MB).

Should be used when user data includes very wide rows (or when line too long error
message occurs). Should not be used otherwise as it increases resource allocation.

--no-final-count

Disable table row count validation that is performed after gptransfer completes copying
database objects to the target database. The default is to compare the row count of tables
copied to the destination databases with the tables in the source database.

-q | --quiet

If specified, suppress status messages. Messages are only sent to the log file.

--quote=character

The quotation character when gptransfer creates writable external tables with the CSV
format. Specify a single ASCII character that is used to enclose column data. The default
value is the octal character \001, the SOH character.

You can specify a delimiter character such as a non-printing character with the format
"\digits" (octal). A backslash followed by the octal value for the character. The octal value
must be enclosed in double quotes.

--schema-only

Create only the schemas specified by the command. Data is not transferred.

If specified with the --full option, gptransfer replicates the complete database schema,
including all tables, indexes, views, user defined types (UDT), and user defined functions
(UDF) for the source databases. No data is transferred.

If you specify tables with the -t or -f option with --schema-only, gptransfer creates only
the tables and indexes. No data is transferred.

Not valid with the --partition-transfer, --partition-transfer-non-partition-
target, or --truncate options.

Note: Because of the overhead required to set up parallel transfers, the --
schema-only option is not recommended when transferring information for a
large number of tables. For more information, see Notes.

--skip-existing

Management Utility Reference Utility Guide

147

Specify this option to skip copying a table from the source database if the table already exists
in the destination database.

At most, only one of the options can be specified --skip-existing, --truncate, or --drop.
If one of them is not specified and the table exists in the destination system, gptransfer
returns an error and quits.

Not valid with the --full option.

--source-host=source_host

Source Greenplum Database host name or IP address. If not specified, the default host is the
system running gptransfer (127.0.0.1).

--source-map-file=host_map_file

File that lists source segment host name and IP addresses. If the file is missing or not all
segment hosts are listed, gptransfer returns an error and quits.

Each line of the file contains a source host name and the host IP address separated by a
comma: hostname,IPaddress. This example lists four Greenplum Database hosts and their
IP addresses.

sdw1,192.0.2.1
sdw2,192.0.2.2
sdw3,192.0.2.3
sdw4,192.0.2.4

This option is required if the --full option is specified or if the source Greenplum Database
system is different than the destination system. This option is not required if source and
destination systems are the same.

--source-port=source_port

Source Greenplum Database port number. If not specified, the default is 5432.

--source-user=source_user

User ID that is used to connect to the source Greenplum Database system. If not specified,
the default is the user gpadmin.

--sub-batch-size=sub_batch_size

Specifies the maximum degree of parallelism of the operations performed when migrating a
table such as starting gpfdist instances, creating named pipes for the move operations. If not
specified, the default is 25. The maximum is 50.

Specify the --batch-size option to control the maximum number of tables that gptransfer
concurrently processes.

-t db.schema.table

A table from the source database system to copy. The fully qualified table name must be
specified.

A set of tables can be specified using the Python regular expression syntax. See the -d
option for information about using regular expressions.

If the destination table or database does not exist, it is created. This option can be specified
multiple times to include multiple tables. Only the table and table data are copied and indexes
are re-created. Dependent objects are not copied.

If the source table does not exist, gptransfer returns an error and quits.

If you specify the -d option to copy all the tables from a database, you do not need to specify
individual tables from the database.

Not valid with the --full, -d, -f, --partition-transfer, or --partition-transfer-non-
partition-target options.

-T db.schema.table

Management Utility Reference Utility Guide

148

A table from the source database system to exclude from transfer. The fully qualified table
name must be specified.

A set of tables can be specified using the Python regular expression syntax. See the -d
option for information about using regular expressions.

This option can be specified multiple times to include multiple tables. Only the specified
tables are excluded. To exclude dependent objects, you must explicitly specify them.

The utility removes the excluded tables from the list of tables that are being transferred to the
destination database before starting the transfer. If excluding tables results in no tables being
transferred, the database or schema is not created in the destination system.

If a source table does not exist, gptransfer displays a warning.

Not valid with the --full, --partition-transfer, or --partition-transfer-non-
partition-targetoptions.

You can specify the --dry-run option to test the command. The -v option displays and logs
the excluded tables.

--timeout seconds

Specify the time out value in seconds that gptransfer passes the gpfdist processes that
gptransfer uses. The value is the time allowed for Greenplum Database to establish a
connection to a gpfdist process. You might need to increase this value when operating on
high-traffic networks.

The default value is 300 seconds (5 minutes). The minimum value is 2 seconds, the
maximum value is 600 seconds.

--truncate

Specify this option to truncate the table that is in the destination database if it already exists.

At most, only one of the options can be specified --skip-existing, --truncate, or --drop.
If one of them is not specified and the table exists in the destination system, gptransfer
returns an error and quits.

Not valid with the --full option.

--validate=type

Perform data validation on table data. These are the supported types of validation.

count - Specify this value to compare row counts between source and destination table data.

MD5 - Specify this value to compare MD5 values between source and destination table data.

If validation for a table fails, gptransfer displays the name of the table and writes the
file name to the text file failed_migrated_tables_yyyymmdd_hhmmss.txt. The
yyyymmdd_hhmmss is a time stamp when the gptransfer process was started. The file is
created in the directory where gptransfer is executed.

Note: The file contains the table names where validation failed or other errors
occurred during table migration.

-v | --verbose

If specified, sets the logging level to verbose. Additional log information is written to the log
file and the command line during command execution.

--work-base-dir=work_dir

Specify the directory that gptransfer uses to store temporary working files such as PID files
and named pipes. The default directory is the user's home directory.

Source and destination systems must be able to access the gptransfer work directory.

-x

Acquire an exclusive lock on tables during the migration to prevent insert or updates.

Management Utility Reference Utility Guide

149

On the source database, an exclusive lock is acquired when gptransfer inserts into the
external table and is released after validation.

On the destination database, an exclusive lock is acquired when gptransfer selects from
external table and released after validation.

If -x option is not specified and --validate is specified, validation failures occur if data
is inserted into either the source or destination table during the migration process. The
gptransfer utility displays messages if validation errors occur.

-h | -? | --help

Displays the online help.

--version

Displays the version of this utility.

Examples
This command copies the table public.t1 from the database db1 and all tables in the database db2 to the
system mytest2.

gptransfer -t db1.public.t1 -d db2 --dest-host=mytest2 \
 --source-map-file=gp-source-hosts --truncate

If the databases db1 and db2 do not exist on the system mytest2, they are created. If any of the source
tables exist on the destination system, gptransfer truncates the table and copies the data from the source
to the destination table.

This command copies leaf child partition tables from a source system to a destination system.

gptransfer -f input_file --partition-transfer --source-host=source_host \
 --source-user=source_user --source-port=source_port --dest-host=dest_host \
 --dest-user=dest_user --dest-port=dest_port --source-map-file=host_map_file

This line in input_file copies a leaf child partition from the source system to the destination system.

 srcdb.people.person_1_prt_experienced, destdb.public.employee_1_prt_seniors

The line assumes partitioned tables in the source and destination systems similar to the following tables.

• In the people schema of the srcdb database of the source system, a partitioned table with a leaf child
partition table person_1_prt_experienced. This CREATE TABLE command creates a partitioned table
with the leaf child partition table.

CREATE TABLE person(id int, title char(1))
 DISTRIBUTED BY (id)
 PARTITION BY list (title)
 (PARTITION experienced VALUES ('S'),
 PARTITION entry_level VALUES ('J'),
 DEFAULT PARTITION other);

• In the public schema of the destdb database of the source system, a partitioned table with a leaf child
partition table public.employee_1_prt_seniors. This CREATE TABLE command creates a partitioned
table with the leaf child partition table.

CREATE TABLE employee(id int, level char(1))
 DISTRIBUTED BY (id)
 PARTITION BY list (level)
 (PARTITION seniors VALUES ('S'),
 PARTITION juniors VALUES ('J'),
 DEFAULT PARTITION other);

Management Utility Reference Utility Guide

150

This example uses Python regular expressions in a filter file to specify the set of tables to transfer.
This command specifies the -f option with the filter file /tmp/filter_file to limit the tables that are
transferred.

gptransfer -f /tmp/filter_file --source-port 5432 --source-host test4 \
 --source-user gpadmin --dest-user gpadmin --dest-port 5432 --dest-host test1 \
 --source-map-file /home/gpadmin/source_map_file

This is the contents of /tmp/filter_file.

"test1.arc/.*/./.*/"
"test1.c/(..)/y./.*/"

In the first line, the regular expressions for the schemas, arc/.*/, and for the tables, /.*/, limit the
transfer to all tables with the schema names that start with arc.

In the second line, the regular expressions for the schemas, c/(..)/y, and for the tables, /.*/, limit the
transfer to all tables with the schema names that are four characters long and that start with c and end with
y, for example, crty.

When the command is run, tables in the database test1 that satisfy either condition are transferred to the
destination database.

See Also
gpfdist

For information about loading and unloading data, see the Greenplum Database Administrator Guide.

Management Utility Reference Utility Guide

151

pgbouncer
Manages database connection pools.

Synopsis
pgbouncer [OPTION ...] config.ini

 OPTION
 [-d | --daemon]
 [-R | --restart]
 [-q | --quiet]
 [-v | --verbose]
 [{-u | --user}=username]

pgbouncer [-V | --version] | [-h | --help]

Description
PgBouncer is a light-weight connection pool manager for Greenplum and PostgreSQL databases.
Databases may be on different Greenplum Database clusters or PostgreSQL backends. PgBouncer
creates a pool for each database user and database combination. A pooled connection can only be reused
for another connection request for the same user and database. The client application connects to the
connection pool's host and port instead of the Greenplum Database master host and port. PgBouncer
either creates a new database connection for the client or reuses an existing connection. When the client
disconnects, the connection is returned to the pool for re-use.

PgBouncer supports the standard connection interface that PostgreSQL and Greenplum Database
share. A client requesting a database connection provides the host name and port where PgBouncer is
running, as well as the database name, username, and password. PgBouncer looks up the requested
database (which may be an alias for the actual database) in its configuration file to find the host name,
port, and database name for the database connection. The configuration file entry also determines how to
authenticate the user and what database role will be used for the connection—a "forced user" can override
the username provided with the client's connection request.

PgBouncer requires an authentication file, a text file that contains a list of users and passwords.
Passwords may be either clear text, MD5-encoded, or an LDAP/AD lookup string. You can also set
up PgBouncer to query the pg_shadow table in the destination database for users that are not in the
authentication file.

PgBouncer shares connections in one of three pool modes:

• Session pooling – When a client connects, a connection is assigned to it as long as it remains
connected. When the client disconnects, the connection is placed back into the pool.

• Transaction pooling – A connection is assigned to a client for the duration of a transaction. When
PgBouncer notices the transaction is done, the connection is placed back into the pool. This mode can
be used only with applications that do not use features that depend upon a session.

• Statement pooling – Statement pooling is like transaction pooling, but multi-statement transactions are
not allowed. This mode is intended to enforce autocommit mode on the client and is targeted for PL/
Proxy on PostgreSQL.

A default pool mode can be set for the PgBouncer instance and the mode can be overridden for individual
databases and users.

By connecting to a virtual pgbouncer database, you can monitor and manage PgBouncer using SQL-
like commands. Configuration parameters can be changed without having to restart PgBouncer, and the
configuration file can be reloaded to pick up changes.

Management Utility Reference Utility Guide

152

PgBouncer does not yet support SSL connections. If you want to encrypt traffic between clients and
PgBouncer, you can use stunnel, a free software utility that creates TLS-encrypted tunnels using the
OpenSSL cryptography library. See "Securing PgBouncer Connections with stunnel" in the Greenplum
Database Administrator Guide for directions.

See the PgBouncer FAQ for additional usage information.

This reference topic includes the following additional reference information:

• PgBouncer Configuration File

• PgBouncer Authentication File Format

• PgBouncer Administration Console Commands

Options
-d | --daemon

Run PgBouncer as a daemon (a background process). The default is to run as a foreground
process.

PgBouncer displays start up messages when starting as a daemon. To disable the display of
messages add the -q option.

To shut down a PgBouncer daemon, log in to the administration console and issue the
SHUTDOWN command.

Note: This option does not work on Windows servers.

-R | --restart

Restart PgBouncer using the specified command line arguments. Non-TLS connections to
databases are maintained during restart; TLS connections are dropped.

If you specify only the -R option, PgBouncer displays log information on the command line
after restart. To restart PgBouncer as a daemon specify the options -Rd.

Note: Works only if the operating system supports Unix sockets and the
PgBouncer configuration has no unix_socket_dir. This option does not work
on Windows servers.

-q | --quiet

Run quietly. Do not display messages on the command line (stdout).

-v | --verbose

Increase message verbosity. Display additional messages. Can be used multiple times.

{-u | --user}=username

The PgBouncer process assumes the identity of username.

-V | --version

Show version and exit.

-h | --help

Show help message and exit.

PgBouncer Configuration File
The PgBouncer configuration file (usually pgbouncer.ini) is in the "ini" format. Section names are
enclosed in square braces ([and]). Lines beginning with ";" or "#" are comments and are ignored. The
characters ";" and "#" are not recognized when they appear later in the line.

Synopsys
[databases]

https://www.stunnel.org
https://pgbouncer.github.io/faq.html

Management Utility Reference Utility Guide

153

db = ...

[pgbouncer]
...

[users]
...

Description
A PgBouncer configuration file has up to three sections:

• [databases] Section

• [pgbouncer] Section

• [users] Section

[databases] Section
The databases section contains key=value pairs, where the key is a database name and the value is a
libpq connect-string list of key=value pairs.

A database name can contain characters [0-9A-Za-z_.-] without quoting. Names that contain other
chars must be quoted with standard SQL identifier quoting

• Enclose names in double quotes (")

• Represent a double-quote within an identifier with two consecutive double quote characters

The database name "*" is the fallback database. The value for this key is a connect string for the
requested database. Automatically created database entries like these are cleaned up if they remain idle
longer then the time specified in autodb_idle_timeout parameter.

The PgBouncer configuration file can contain %include directives, which specify another filee to read and
process. This allows splitting the configuration file into separate parts. For example:

%include filename

Location Parameters
The following parameters may be included in the value to specify the location of the database.

dbname

The destination database name.

Default: same as the client-side database name.

host

The name or IP address of the Greenplum master host. Host names are resolved at connect
time. If DNS returns several results, they are used in a round-robin manner. The DNS result
is cached and the dns_max_ttl parameter determines when the cache entry expires.

Default: not set, means the connection is made through a Unix socket.

port

The Greenplum Database master port. Default: 5432

user, password

If user= is set, all connections to the destination database are made with the specified user.
This means there will be just one pool for the database.

If the user= parameter is not set, PgBouncer attempts to log in to the destination database
with the user name passed by the client. This means there will be one pool for each user who
connects to the database.

Management Utility Reference Utility Guide

154

auth_user

If auth_user is set, any user who is not specified in auth_file is authenticated by querying
the pg_shadow table in the database as the auth_user. The auth_user password must be
set in the auth_file.

Pool Configuration
pool_size

Set maximum size of pools for this database. If not set, the default_pool_size is used.

connect_query

Query to be executed after a connection is established, but before allowing the connection to
be used by any clients. If the query raises errors, they are logged but ignored otherwise.

pool_mode

Set the pool mode for this database. If not set, the default pool_mode is used.

max_db_connections

Set a database-wide maximum number of connections for this database. The total number of
connections for all pools for this database will not exceed this value.

Extra Parameters
The following parameters allow setting default parameters on server connections.

Note that since version 1.1 PgBouncer tracks client changes for their values, so their use in
pgbouncer.ini is deprecated now.

client_encoding

Ask specific client_encoding from server.

datestyle

Ask specific datestyle from server.

timezone

Ask specific timezone from server.

[pgbouncer] Section
logfile

Specifies the location of the log file. The log file is kept open. After log rotation execute kill
-HUP or run the RELOAD; command in the PgBouncer Administrative Console.

Default: not set.

Note: On Windows machines, the service must be stopped and started

.

pidfile

The name of the pid file. Without a pidfile, PgBouncer cannot be run as a background
process (daemon).

Default: not set.

listen_addr

A list of interface addresses where PgBouncer listens for TCP connections. You may also
use *, which means to listen on all interfaces. If not set, only Unix socket connections are
allowed.

Addresses can be specified numerically (IPv4/IPv6) or by name.

Management Utility Reference Utility Guide

155

Default: not set

listen_port

Which port to listen on. Applies to both TCP and Unix sockets.

Default: 6432

unix_socket_dir

Specifies location for Unix sockets. Applies to both listening socket and server connections.
If set to an empty string, Unix sockets are disabled. Required for online reboot (-R option) to
work.

Note: Not supported on Windows machines.

Default: /tmp

unix_socket_mode

Filesystem mode for Unix socket.

Default: 0777

unix_socket_group

Group name to use for Unix socket.

Default: not set

user

If set, specifies the Unix user to change to after startup. This only works if PgBouncer is
started as root or if user is the same as the current user. Note: Not supported on Windows
machines.

Default: not set

auth_file

The name of the file containing the user names and passwords to load. The file format is the
same as the Greenplum Database pg_auth/pg_pwd file, so this parameter can be set to one
of those backend files. See Authentication File Format for details.

Default: not set.

auth_type

How to authenticate users.
cert

Clients must connect with TLS using a valid client certificate. The client's username is
taken from CommonName field in the certificate.

md5

Use MD5-based password check. auth_file may contain both MD5-encrypted or
plain-text passwords. This is the default authentication method.

plain

Clear-text password is sent over wire. Deprecated.

trust

No authentication is done. The username must still exist in the auth_file.

any

Like the trust method, but the username supplied is ignored. Requires that all
databases are configured to log in with a specific user. Additionally, the console
database allows any user to log in as admin.

auth_query

Management Utility Reference Utility Guide

156

Query to load a user's password from database. If a user does not exist in the auth_file
and the database entry includes an auth_user, this query is run in the database as
auth_user to lookup up the user.

Default: SELECT usename, passwd FROM pg_shadow WHERE usename=$1

pool_mode

Specifies when a server connection can be reused by other clients.
session

Connection is returned to the pool when the client disconnects. Default.

transaction

Connection is returned to the pool when the transaction finishes.

statement

Connection is returned to the pool when the current query finishes. Long transactions
with multiple statements are disallowed in this mode.

max_client_conn

Maximum number of client connections allowed. When increased then the file descriptor
limits should also be increased. The actual number of file descriptors used is more than
max_client_conn. The theoretical maximum used, when each user connects with its own
username to the server is:

max_client_conn + (max_pool_size * total_databases * total_users)

If a database user is specified in the connect string, all users connect using the same
username. Then the theoretical maximum connections is:

max_client_conn + (max_pool_size * total_databases)

The theoretical maximum should be never reached, unless somone deliberately crafts a load
for it. Still, it means you should set the number of file descriptors to a safely high number.
Search for ulimit in your operating system documentation.

Note: ulimit does not apply in a Windows environment.

Default: 100

default_pool_size

The number of server connections to allow per user/database pair. This can be overridden in
the per-database configuration.

Default: 20

min_pool_size

Add more server connections to the pool when it is lower than this number. This improves
behavior when the usual load drops and then returns suddenly after a period of total
inactivity.

Default: 0 (disabled)

reserve_pool_size

The number of additional connections to allow for a pool. 0 disables.

Default: 0 (disabled)

reserve_pool_timeout

If a client has not been serviced in this many seconds, PgBouncer enables use of additional
connections from reserve pool. 0 disables.

Default: 5.0

Management Utility Reference Utility Guide

157

max_db_connections

The maximum number of connections per database. If you hit the limit, closing a client
connection to one pool does not immediately allow a server connection to be established for
another pool, because the server connection for the first pool is still open. Once the server
connection closes (due to idle timeout), a new server connection will be opened for the
waiting pool.

Default: unlimited

max_user_connections

The maximum number of connections per-user. When you hit the limit, closing a client
connection to one pool does not immediately allow a connection to be established for another
pool, because the connection for the first pool is still open. After the connection for the first
pool has closed (due to idle timeout), a new server connection is opened for the waiting pool.

server_round_robin

By default, PgBouncer reuses server connections in LIFO (last-in, first-out) order, so that a
few connections get the most load. This provides the best performance when a single server
serves a database. But if there is TCP round-robin behind a database IP, then it is better if
PgBouncer also uses connections in that manner to achieve uniform load.

Default: 0

ignore_startup_parameters

By default, PgBouncer allows only parameters it can keep track of in startup packets:
client_encoding, datestyle, timezone, and standard_conforming_strings.

All others parameters raise an error. To allow other parameters, specify them here so that
PgBouncer can ignore them.

Default: empty

disable_pqexec

Disable Simple Query protocol (PQexec). Unlike Extended Query protocol, Simple Query
protocol allows multiple queries in one packet, which allows some classes of SQL-injection
attacks. Disabling it can improve security. This means that only clients that exclusively use
Extended Query protocol will work.

Default: 0

application_name_add_host

Add the client host address and port to the application name setting set on connection
start. This helps in identifying the source of bad queries. The setting is overwritten without
detection if the application executes SET APPLICATION_NAME after connecting.

Default: 1

Log Settings
syslog

Toggles syslog on and off. On Windows, eventlog is used instead.

Default: 0

syslog_ident

Under what name to send logs to syslog.

Default: pgbouncer

syslog_facility

Under what facility to send logs to syslog. Some possibilities are: auth, authpriv, daemon,
user, local0-7

Management Utility Reference Utility Guide

158

Default: daemon

log_connections

Log successful logins.

Default: 1

log_disconnections

Log disconnections, with reasons.

Default: 1

log_pooler_errors

Log error messages that the pooler sends to clients.

Default: 1

stats_period

How often to write aggregated statistics to the log.

Default: 60

Console Access Control
admin_users

Comma-separated list of database users that are allowed to connect and run all commands
on console. Ignored when auth_mode=any, in which case any username is allowed in as
admin.

Default: empty

stats_users

Comma-separated list of database users that are allowed to connect and run read-only
queries on console. Thats means all SHOW commands except SHOW FDS.

Default: empty.

Connection Sanity Checks, Timeouts
server_reset_query

Query sent to server on connection release, before making it available to other clients. At that
moment no transaction is in progress so it should not include ABORT or ROLLBACK.

A good choice for Postgres 8.2 and below, and Greenplum Database, is:

server_reset_query = RESET ALL; SET SESSION AUTHORIZATION DEFAULT;

For Postgres 8.3 and above, the following is sufficient:

server_reset_query = DISCARD ALL;

When transaction pooling is used, the server_reset_query should be empty, as clients
should not use any session features. If clients do use session features, they will be broken
because transaction pooling does not guarantee that the next query will run on the same
connection.

Default: RESET ALL; SET SESSION AUTHORIZATION DEFAULT;

server_reset_query_always

Whether server_reset_query should be run in all pooling modes. When this setting is off
(default), the server_reset_query will be run only in pools that are in sessions pooling
mode. Connections in transaction pooling mode should not have any need for reset query.

Management Utility Reference Utility Guide

159

Default: 0

server_check_delay

How long to keep released connections available for re-use without running sanity-check
queries on it. If 0 then the query is run always.

Default: 30.0

server_check_query

A simple do-nothing query to test the server connection.

If an empty string, then sanity checking is disabled.

Default: SELECT 1;

server_lifetime

The pooler tries to close server connections that have been connected longer than this
number of seconds. Setting it to 0 means the connection is to be used only once, then
closed.

Default: 3600.0

server_idle_timeout

If a server connection has been idle more than this many seconds it is dropped. If this
parameter is set to 0, timeout is disabled. [seconds]

Default: 600.0

server_connect_timeout

If connection and login will not finish in this number of seconds, the connection will be closed.

Default: 15.0

server_login_retry

If a login fails due to failure from connect() or authentication, the pooler waits this many
seconds before retrying to connect.

Default: 15.0

client_login_timeout

If a client connects but does not manage to login in this number of seconds, it is
disconnected. This is needed to avoid dead connections stalling SUSPEND and thus online
restart.

Default: 60.0

autodb_idle_timeout

If database pools created automatically (via "*") have been unused this many seconds, they
are freed. Their statistics are also forgotten.

Default: 3600.0

dns_max_ttl

How long to cache DNS lookups, in seconds. If a DNS lookup returns several answers,
PgBouncer round-robins between them in the meantime. The actual DNS TTL is ignored.

Default: 15.0

dns_nxdomain_ttl

How long error and NXDOMAIN DNS lookups can be cached, in seconds.

Default: 15.0

dns_zone_check_period

Management Utility Reference Utility Guide

160

Period to check if zone serial numbers have changed.

PgBouncer can collect DNS zones from hostnames (everything after first dot) and then
periodically check if the zone serial numbers change. If changes are detected, all hostnames
in that zone are looked up again. If any host IP changes, its connections are invalidated.

Works only with UDNS backend (--with-udns to configure).

Default: 0.0 (disabled)

Dangerous Timeouts
Setting tje following timeouts can cause unexpected errors.

query_timeout

Queries running longer than this (seconds) are canceled. This parameter should be used
only with a slightly smaller server-side statement_timeout, to trap queries with network
problems. [seconds]

Default: 0.0 (disabled)

query_wait_timeout

The maximum time, in seconds, queries are allowed to wait for execution. If the query is not
assigned a connection during that time, the client is disconnected. This is used to prevent
unresponsive servers from grabbing up connections.

Default: 0.0 (disabled)

client_idle_timeout

Client connections idling longer than this many seconds are closed. This should be larger
than the client-side connection lifetime settings, and only used for network problems.

Default: 0.0 (disabled)

idle_transaction_timeout

If client has been in "idle in transaction" state longer than this (seconds), it is disconnected.

Default: 0.0 (disabled)

Low-level Network Settings
pkt_buf

Internal buffer size for packets. Affects the size of TCP packets sent and general memory
usage. Actual libpq packets can be larger than this so there is no need to set it large.

Default: 2048

max_packet_size

Maximum size for packets that PgBouncer accepts. One packet is either one query or one
result set row. A full result set can be larger.

Default: 2147483647

listen_backlog

Backlog argument for the listen(2) system call. It how many new unanswered connection
attempts are kept in queue. When the queue is full, further new connection attemps are
dropped.

Default: 128

sbuf_loopcnt

How many times to process data on one connection, before proceeding. Without this limit,
one connection with a big result set can stall PgBouncer for a long time. One loop processes
one pkt_buf amount of data. 0 means no limit.

Management Utility Reference Utility Guide

161

Default: 5

suspend_timeout

How many seconds to wait for buffer flush during SUSPEND or reboot (-R). Connection is
dropped if flush does not succeed.

Default: 10

tcp_defer_accept

For details on this and other TCP options, please see the tcp(7) man page.

Default: 45 on Linux, otherwise 0

tcp_socket_buffer

Default: not set

tcp_keepalive

Turns on basic keepalive with OS defaults.

On Linux, the system defaults are tcp_keepidle=7200, tcp_keepintvl=75,
tcp_keepcnt=9.

Default: 1

tcp_keepcnt

Default: not set

tcp_keepidle

Default: not set

tcp_keepintvl

Default: not set

[users] Section
This section contains key=value pairs, where the key is a user name and the value is a libpq connect-string
list of key=value pairs.

Pool configuration

pool_mode

Set the pool mode to be used for all connections from this user. If not set, the database or
default pool_mode is used.

Example Configuration Files
Minimal Configuration

[databases]
template1 = host=127.0.0.1 dbname=template1 auth_user=gpadmin

[pgbouncer]
pool_mode = session
listen_port = 6543
listen_addr = 127.0.0.1
auth_type = md5
auth_file = users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = someuser
stats_users = stat_collector

Management Utility Reference Utility Guide

162

Use connection parameters passed by the client:

[databases]
* =

[pgbouncer]
listen_port = 65432
listen_addr = 0.0.0.0
auth_type = trust
auth_file = bouncer/users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
ignore_startup_parameters=options

Database Defaults

[databases]

; foodb over unix socket
foodb =

; redirect bardb to bazdb on localhost
bardb = host=127.0.0.1 dbname=bazdb

; access to destination database will go with single user
forcedb = host=127.0.0.1 port=300 user=baz password=foo client_encoding=UNICODE
 datestyle=ISO

PgBouncer Authentication File Format
PgBouncer requires its own user database, a text file in following format:

"username1" "password" ...
"username2" "md5abcdef012342345" ...

There is one line per user. Each line must have at least two fields. Fields are enclosed in double quotes
("). The first field is the user name and the second is either a plain-text or an MD5-encoded password. The
remainder of the line is ignored.

This file format is similar to text files used by Greenplum Database for authentication information, and
PgBouncer can work directly with the Greenplum Database authentication files.

To avoid plain-text passwords, encode user passwords with MD5. The format for an MD5 encoded
password is:

"md5" + md5(password + username)

For example, the following command generates the MD5 string for the user admin with password 1234:

$ echo -n "1234admin" | md5sum
$ 45f2603610af569b6155c45067268c6b

The MD5-hidden password is:

md545f2603610af569b6155c45067268c6b

PgBouncer Administration Console Commands
The PgBouncer Administration Console is accessed by connecting to the database pgbouncer.

$ psql -p 6543 pgbouncer

Management Utility Reference Utility Guide

163

Only users listed in configuration parameters admin_users or stats_users can log in to the console.
However, when auth_mode=any, then any user may log in as a stats_user.

The user name pgbouncer may also log in without a password through a Unix socket if the client has the
same Unix user UID as the running process.

Administration Console Command Syntax

pgbouncer=# show help;
NOTICE: Console usage
DETAIL:
 SHOW HELP|CONFIG|DATABASES|POOLS|CLIENTS|SERVERS|VERSION
 SHOW STATS|FDS|SOCKETS|ACTIVE_SOCKETS|LISTS|MEM
 SHOW DNS_HOSTS|DNS_ZONES
 SET key = arg
 RELOAD
 PAUSE [<db>]
 RESUME [<db>]
 DISABLE <db>
 ENABLE <db>
 KILL <db>
 SUSPEND
 SHUTDOWN

Administration Commands
From the PgBouncer Administrator console you can control connections between PgBouncer and
Greenplum Database.You can also set PgBouncer configuration parameters.

The following PgBouncer administration commands control the PgBouncer process.

PAUSE [database]

If no database is specified, PgBouncer tries to disconnect from all servers, first waiting for
all queries to complete. The command will not return before all queries are finished. This
command is to be used to prepare to restart the database.

If a database name is specified, only that database is paused.

If you run a PAUSE database command, and then a PAUSE command to pause all databases,
you must execute two RESUME commands, one for all databases, and one for the named
database.

SUSPEND

All socket buffers are flushed and PgBouncer stops listening for data on them. The command
will not return before all buffers are empty. To be used when rebooting PgBouncer online.

RESUME [database]

Resume work from a previous PAUSE or SUSPEND command.

If a database was specified for the PAUSE command, the database must also be specified
with the RESUME command.

After pausing all databases with the PAUSE command, resuming a single database with
RESUME database is not supported.

DISABLE database

Reject all new client connections on the database.

ENABLE database

Allow new client connections on the database.

KILL database

Immediately drop all client and server connections to the named database.

Management Utility Reference Utility Guide

164

SHUTDOWN

Stop PgBouncer process. To exit from the psql command line session, enter \q.

RELOAD

The PgBouncer process reloads the current configuration file and updates the changeable
settings.

SET key = value

Override specified configuration setting. See the SHOW CONFIG; command.

SHOW Command
The SHOW category command displays different types of PgBouncer information. You can specify one of
the following categories:

• ACTIVE_SOCKETS

• CLIENTS

• CONFIG

• DATABASES

• DNS_ZONES

• FDS

• POOLS

• SERVERS

• STATS

• LISTS

• MEM

• USERS

• VERSION

ACTIVE_SOCKETS

Table 8: Active Socket Information

Column Description

type S, for server, C for client.

user Username pgbouncer uses to connect to server.

database Database name.

state State of the server connection, one of active, used or idle.

addr IP address of PostgreSQL server.

port Port of PostgreSQL server.

local_addr Connection start address on local machine.

local_port Connection start port on local machine.

connect_time When the connection was made.

request_time When last request was issued.

ptr Address of internal object for this connection. Used as unique ID.

link Address of client connection the server is paired with.

recv_pos Receive position in the I/O buffer.

Management Utility Reference Utility Guide

165

Column Description

pkt_pos Parse position in the I/O buffer.

pkt_remain Number of packets remaining on the socket.

send_pos Send position in the packet.

send_remain Total packet length remaining to send.

pkt_avail Amount of I/O buffer left to parse.

send_avail Amount of I/O buffer left to send.

CLIENTS

Table 9: Clients

Column Description

type C, for client.

user Client connected user.

database Database name.

state State of the client connection, one of active, used, waiting or idle.

addr IP address of client, or unix for a socket connection.

port Port client is connected to.

local_addr Connection end address on local machine.

local_port Connection end port on local machine.

connect_time Timestamp of connect time.

request_time Timestamp of latest client request.

ptr Address of internal object for this connection. Used as unique ID.

link Address of server connection the client is paired with.

remote_pid Process ID, if client connects with Unix socket and the OS supports getting
it.

CONFIG

List of current PgBouncer parameter settings

Table 10: Config

Column Description

key Configuration variable name

value Configuration value

changeable Either yes or no. Shows whether the variable can be changed while running.
If no, the variable can be changed only at boot time.

Management Utility Reference Utility Guide

166

DATABASES

Table 11: Databases

Column Description

name Name of configured database entry.

host Host pgbouncer connects to.

port Port pgbouncer connects to.

database Actual database name pgbouncer connects to.

force_user When user is part of the connection string, the connection between
pgbouncer and the database server is forced to the given user, whatever the
client user.

pool_size Maximum number of server connections.

reserve_pool The number of additional connections that can be created if the pool
reaches pool_size.

pool_mode The database's override pool_mode or NULL if the default will be used
instead.

max_connections Maximum number of connections for all pools for this database.

current_connections The total count of connections for all pools for this database.

DNS_ZONES

Table 12: DNS Zones in Cache

Column Description

zonename Zone name

serial Current DNS serial number

count Hostnames belonging to this zone

FDS

SHOW FDS is an internal command used for an online restart, for example when upgrading to a new
PgBouncer version. It shows a list of file descriptors in use with the internal state attached to them. This
command blocks the internal event loop, so it should not be used while PgBouncer is in use.

When the connected user has username "pgbouncer", connects through a Unix socket, and has the same
UID as the running process, the actual file descriptors are passed over the connection. Note: This does not
work on Windows machines.

Table 13: FDS

Column Description

fd File descriptor numeric value.

task One of pooler, client, or server.

user User of the connection using the file descriptor.

Management Utility Reference Utility Guide

167

Column Description

database Database of the connection using the file descriptor.

addr IP address of the connection using the file descriptor, "unix" if a Unix socket
is used.

port Port used by the connection using the file descriptor.

cancel Cancel key for this connection.

link File descriptor for corresponding server/client. NULL if idle.

client_encoding Character set used for the database.

std_strings This controls whether ordinary string literals ('...') treat backslashes literally,
as specified in the SQL standard.

datestyle Display format for date and time values.

timezone The timezone for interpreting and displaying time stamps.

LISTS

Shows the following PgBouncer statistcs in two columns: the item label and value.

Table 14: Count of PgBouncer Items

Item Description

databases Count of databases.

users Count of users.

pools Count of pools.

free_clients Count of free clients.

used_clients Count of used clients.

login_clients Count of clients in login state.

free_servers Count of free servers.

used_servers Count of used servers.

dns_names Count of DNS names.

dns_zones Count of DNS zones.

dns_queries Count of DNS queries.

dns_pending Count of in-flight DNS queries.

MEM

Shows cache memory information for these PgBouncer caches:

• user_cache

• db_cache

• pool_cache

• server_cache

• client_cache

• iobuf_cache

Management Utility Reference Utility Guide

168

Table 15: In Memory Cache

Column Description

name Name of cache.

size The size of a single slot in the cache.

used Number of used slots in the cache.

free The number of available slots in the cache.

memtotal Total bytes used by the cache.

POOLS

A new pool entry is made for each pair of (database, user).

Table 16: Pools

Column Description

database Database name.

user User name.

cl_active Client connections that are linked to server connection and can process
queries.

cl_waiting Client connections have sent queries but have not yet got a server
connection.

sv_active Server connections that linked to client.

sv_idle Server connections that are unused and immediately usable for client
queries.

sv_used Server connections that have been idle more than server_check_delay.
The server_check_query query must be run on them before they can be
used.

sv_tested Server connections that are currently running either server_reset_query
or server_check_query.

sv_login Server connections currently in process of logging in.

maxwait How long the first (oldest) client in the queue has waited, in seconds. If this
begins to increase, the current pool of servers does not handle requests fast
enough. The cause may be either an overloaded server or the pool_size
setting is too small.

pool_mode The pooling mode in use.

SERVERS

Table 17: Servers

Column Description

type S, for server.

user User ID that pgbouncer uses to connect to server.

Management Utility Reference Utility Guide

169

Column Description

database Database name.

state State of the pgbouncer server connection, one of active, used, or idle.

addr IP address of the Greenplum or PostgreSQL server.

port Port of the Greenplum or PostgreSQL server.

local_addr Connection start address on local machine.

local_port Connection start port on local machine.

connect_time When the connection was made.

request_time When the last request was issued.

ptr Address of the internal object for this connection. Used as unique ID.

link Address of gthe client connection the server is paired with.

remote_pid Pid of backend server process. If the connection is made over Unix socket
and the OS supports getting process ID info, it is the OS pid. Otherwise it
is extracted from the cancel packet the server sent, which should be PID
in case server is PostgresSQL, but it is a random number in case server is
another PgBouncer.

STATS

Shows statistics.

Table 18: Stats

Column Description

database Statistics are presented per database.

total_requests Total number of SQL requests pooled by pgbouncer.

total_received Total volume in bytes of network traffic received by pgbouncer.

total_sent Total volume in bytes of network traffic sent by pgbouncer.

total_query_time Total number of microseconds spent by pgbouncer when actively connected
to the database server.

avg_req Average requests per second in last stat period.

avg_recv Average received (from clients) bytes per second.

avg_sent Average sent (to clients) bytes per second.

avg_query Average query duration in microseconds.

USERS

Table 19: Users

Column Description

name The user name

pool_mode The user's override pool_mode, or NULL if the default will be used instead.

Management Utility Reference Utility Guide

170

VERSION

Display PgBouncer version information.

Note: This reference documentation is based on the PgBouncer 1.6.1 documentation.

171

Chapter 3

Client Utility Reference

This reference describes the command-line client utilities provided with Greenplum Database. Greenplum
Database uses the standard PostgreSQL client programs and provides additional client utilities for
administering a distributed Greenplum Database DBMS. Greenplum Database client utilities reside in
$GPHOME/bin.

Client Utility Reference Utility Guide

172

Client Utility Summary

clusterdb
Reclusters tables that were previously clustered with CLUSTER.

clusterdb [connection-option ...] [-v] [-t table] [[-d] dbname]

clusterdb [connection-option ...] [-a] [-v]

clusterdb --help

clusterdb --version

See clusterdb for more information.

createdb
Creates a new database.

createdb [connection_option ...] [-D tablespace] [-E encoding]
 [-O owner] [-T template] [-e] [dbname ['description']]

createdb --help

createdb --version

See createdb for more information.

createlang
Defines a new procedural language for a database.

createlang [connection_option ...] [-e] langname [[-d] dbname]

createlang [connection-option ...] -l dbname

createlang --help

createlang --version

See createlang for more information.

createuser
Creates a new database role.

createuser [connection_option ...] [role_attribute ...] [-e] role_name

createuser --help

createuser --version

See createuser for more information.

Client Utility Reference Utility Guide

173

dropdb
Removes a database.

dropdb [connection_option ...] [-e] [-i] dbname

dropdb --help

dropdb --version

See dropdb for more information.

droplang
Removes a procedural language.

droplang [connection-option ...] [-e] langname [[-d] dbname]

droplang [connection-option ...] [-e] -l dbname

droplang --help

droplang --version

See droplang for more information.

dropuser
Removes a database role.

dropuser [connection_option ...] [-e] [-i] role_name

dropuser --help

dropuser --version

See dropuser for more information.

pg_config
Retrieves information about the installed version of Greenplum Database.

pg_config [option ...]

See pg_config for more information.

pg_dump
Extracts a database into a single script file or other archive file.

pg_dump [connection_option ...] [dump_option ...] dbname

See pg_dump for more information.

pg_dumpall
Extracts all databases in a Greenplum Database system to a single script file or other archive file.

pg_dumpall [connection_option ...] [dump_option ...]

See pg_dumpall for more information.

Client Utility Reference Utility Guide

174

pg_restore
Restores a database from an archive file created by pg_dump.

pg_restore [connection_option ...] [restore_option ...] filename

See pg_restore for more information.

psql
Interactive command-line interface for Greenplum Database

psql [option ...] [dbname [username]]

See psql for more information.

reindexdb
Rebuilds indexes in a database.

reindexdb [connection-option ...] [--table | -t table]
 [--index | -i index] [dbname]

reindexdb [connection-option ...] [--all | -a]

reindexdb [connection-option ...] [--system | -s] [dbname]

reindexdb --help

reindexdb --version

See reindexdb for more information.

vacuumdb
Garbage-collects and analyzes a database.

vacuumdb [connection-option...] [--full | -f] [-F] [--verbose | -v]
 [--analyze | -z] [--table | -t table [(column [,...])]] [dbname]

vacuumdb [connection-options...] [--all | -a] [--full | -f] [-F]
 [--verbose | -v] [--analyze | -z]

vacuumdb --help

vacuumdb --version

See vacuumdb for more information.

Client Utility Reference Utility Guide

175

clusterdb
Reclusters tables that were previously clustered with CLUSTER.

Synopsis
clusterdb [connection-option ...] [-v] [-t table] [[-d] dbname]

clusterdb [connection-option ...] [-a] [-v]

clusterdb --help

clusterdb --version

Description
To cluster a table means to physically reorder a table on disk according to an index so that index scan
operations can access data on disk in a somewhat sequential order, thereby improving index seek
performance for queries that use that index.

The clusterdb utility will find any tables in a database that have previously been clustered with the
CLUSTER SQL command, and clusters them again on the same index that was last used. Tables that have
never been clustered are not affected.

clusterdb is a wrapper around the SQL command CLUSTER. Although clustering a table in this way
is supported in Greenplum Database, it is not recommended because the CLUSTER operation itself is
extremely slow.

If you do need to order a table in this way to improve your query performance, Greenplum recommends
using a CREATE TABLE AS statement to reorder the table on disk rather than using CLUSTER. If you do
'cluster' a table in this way, then clusterdb would not be relevant.

Options
-a | --all

Cluster all databases.

[-d] dbname | [--dbname] dbname

Specifies the name of the database to be clustered. If this is not specified, the database
name is read from the environment variable PGDATABASE. If that is not set, the user name
specified for the connection is used.

-e | --echo

Echo the commands that clusterdb generates and sends to the server.

-q | --quiet

Do not display a response.

-t table | --table table

Cluster the named table only.

-v | --verbose

Print detailed information during processing.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

Client Utility Reference Utility Guide

176

-p port | --port port

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

-W | --password

Force a password prompt.

Examples
To cluster the database test:

clusterdb test

To cluster a single table foo in a database named xyzzy:

clusterdb --table foo xyzzyb

See Also
CLUSTER in the Greenplum Database Reference Guide

Client Utility Reference Utility Guide

177

createdb
Creates a new database.

Synopsis
createdb [connection_option ...] [-D tablespace] [-E encoding]
 [-O owner] [-T template] [-e] [dbname ['description']]

createdb --help

createdb --version

Description
createdb creates a new database in a Greenplum Database system.

Normally, the database user who executes this command becomes the owner of the new database.
However a different owner can be specified via the -O option, if the executing user has appropriate
privileges.

createdb is a wrapper around the SQL command CREATE DATABASE.

Options
dbname

The name of the database to be created. The name must be unique among all other
databases in the Greenplum system. If not specified, reads from the environment variable
PGDATABASE, then PGUSER or defaults to the current system user.

description

A comment to be associated with the newly created database. Descriptions containing white
space must be enclosed in quotes.

-D tablespace | --tablespace tablespace

The default tablespace for the database.

-e echo

Echo the commands that createdb generates and sends to the server.

-E encoding | --encoding encoding

Character set encoding to use in the new database. Specify a string constant (such as
'UTF8'), an integer encoding number, or DEFAULT to use the default encoding. See the
Greenplum Database Reference Guide for information about supported character sets.

-O owner | --owner owner

The name of the database user who will own the new database. Defaults to the user
executing this command.

-T template | --template template

The name of the template from which to create the new database. Defaults to template1.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

Client Utility Reference Utility Guide

178

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

-W | --password

Force a password prompt.

Examples
To create the database test using the default options:

createdb test

To create the database demo using the Greenplum master on host gpmaster, port 54321, using the LATIN1
encoding scheme:

createdb -p 54321 -h gpmaster -E LATIN1 demo

See Also
CREATE DATABASE in the Greenplum Database Reference Guide

Client Utility Reference Utility Guide

179

createlang
Defines a new procedural language for a database.

Synopsis
createlang [connection_option ...] [-e] langname [[-d] dbname]

createlang [connection-option ...] -l dbname

createlang --help

createlang --version

Description
The createlang utility adds a new programming language to a database. createlang is a wrapper around
the SQL command CREATE LANGUAGE.

The procedural language packages included in the standard Greenplum Database distribution are:

• PL/pgSQL

• PL/Perl

• PL/Python

• PL/Java

The PL/pgSQL language is registered in all databases by default.

Greenplum Database has a language handler for PL/R, but the PL/R language package is not pre-installed
with Greenplum Database. A package is available for PL/Tcl that you can enable. See the Procedural
Languages section in the PostgreSQL documentation for more information.

Options
langname

Specifies the name of the procedural programming language to be defined.

[-d] dbname | [--dbname] dbname

Specifies to which database the language should be added. The default is to use the
PGDATABASE environment variable setting, or the same name as the current system user.

-e | --echo

Echo the commands that createlang generates and sends to the server.

-l dbname | --list dbname

Show a list of already installed languages in the target database.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

https://www.postgresql.org/docs/8.2/static/xplang.html
https://www.postgresql.org/docs/8.2/static/xplang.html

Client Utility Reference Utility Guide

180

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

-W | --password

Force a password prompt.

Examples
To install the language plperl into the database mytestdb:

createlang plperl mytestdb

See Also
CREATE LANGUAGE and DROP LANGUAGE in the Greenplum Database Reference Guide

Client Utility Reference Utility Guide

181

createuser
Creates a new database role.

Synopsis
createuser [connection_option ...] [role_attribute ...] [-e] role_name

createuser --help

createuser --version

Description
createuser creates a new Greenplum Database role. You must be a superuser or have the CREATEROLE
privilege to create new roles. You must connect to the database as a superuser to create new superusers.

Superusers can bypass all access permission checks within the database, so superuser privileges should
not be granted lightly.

createuser is a wrapper around the SQL command CREATE ROLE.

Options
role_name

The name of the role to be created. This name must be different from all existing roles in this
Greenplum Database installation.

-c number | --connection-limit number

Set a maximum number of connections for the new role. The default is to set no limit.

-D | --no-createdb

The new role will not be allowed to create databases. This is the default.

-d | --createdb

The new role will be allowed to create databases.

-e | --echo

Echo the commands that createuser generates and sends to the server.

-E | --encrypted

Encrypts the role's password stored in the database. If not specified, the default password
behavior is used.

-i | --inherit

The new role will automatically inherit privileges of roles it is a member of. This is the default.

-I | --no-inherit

The new role will not automatically inherit privileges of roles it is a member of.

-l | --login

The new role will be allowed to log in to Greenplum Database. This is the default.

-L | --no-login

The new role will not be allowed to log in (a group-level role).

-N | --unencrypted

Does not encrypt the role's password stored in the database. If not specified, the default
password behavior is used.

Client Utility Reference Utility Guide

182

-P | --pwprompt

If given, createuser will issue a prompt for the password of the new role. This is not
necessary if you do not plan on using password authentication.

-r | --createrole

The new role will be allowed to create new roles (CREATEROLE privilege).

-R | --no-createrole

The new role will not be allowed to create new roles. This is the default.

-s | --superuser

The new role will be a superuser.

-S | --no-superuser

The new role will not be a superuser. This is the default.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

-W | --password

Force a password prompt.

Examples
Create a role named joe using the default options:

createuser joe
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n
CREATE ROLE

To create the same role joe using connection options and avoiding the prompts and taking a look at the
underlying command:

createuser -h masterhost -p 54321 -S -D -R -e joe
CREATE ROLE joe NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT
LOGIN;
CREATE ROLE

To create the role joe as a superuser, and assign password admin123 immediately:

createuser -P -s -e joe
Enter password for new role: admin123
Enter it again: admin123

Client Utility Reference Utility Guide

183

CREATE ROLE joe PASSWORD 'admin123' SUPERUSER CREATEDB
CREATEROLE INHERIT LOGIN;
CREATE ROLE

In the above example, the new password is not actually echoed when typed, but we show what was typed
for clarity. However the password will appear in the echoed command, as illustrated if the -e option is
used.

See Also
CREATE ROLE in the Greenplum Database Reference Guide

Client Utility Reference Utility Guide

184

dropdb
Removes a database.

Synopsis
dropdb [connection_option ...] [-e] [-i] dbname

dropdb --help

dropdb --version

Description
dropdb destroys an existing database. The user who executes this command must be a superuser or the
owner of the database being dropped.

dropdb is a wrapper around the SQL command DROP DATABASE. See the Greenplum Database Reference
Guide for information about DROP DATABASE.

Options
dbname

The name of the database to be removed.

-e | --echo

Echo the commands that dropdb generates and sends to the server.

-i | --interactive

Issues a verification prompt before doing anything destructive.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

-W | --password

Force a password prompt.

Client Utility Reference Utility Guide

185

Examples
To destroy the database named demo using default connection parameters:

dropdb demo

To destroy the database named demo using connection options, with verification, and a peek at the
underlying command:

dropdb -p 54321 -h masterhost -i -e demo
Database "demo" will be permanently deleted.
Are you sure? (y/n) y
DROP DATABASE "demo"
DROP DATABASE

See Also
DROP DATABASE in the Greenplum Database Reference Guide

Client Utility Reference Utility Guide

186

droplang
Removes a procedural language.

Synopsis
droplang [connection-option ...] [-e] langname [[-d] dbname]

droplang [connection-option ...] [-e] -l dbname

droplang --help

droplang --version

Description
droplang removes an existing programming language from a database. droplang can drop any
procedural language, even those not supplied by the Greenplum Database distribution.

Although programming languages can be removed directly using several SQL commands, it is
recommended to use droplang because it performs a number of checks and is much easier to use.

droplang is a wrapper for the SQL command DROP LANGUAGE.

Options
langname

Specifies the name of the programming language to be removed.

[-d] dbname | [--dbname] dbname

Specifies from which database the language should be removed. The default is to use the
PGDATABASE environment variable setting, or the same name as the current system user.

-e | --echo

Echo the commands that droplang generates and sends to the server.

-l | --list

Show a list of already installed languages in the target database.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

-W | --password

Client Utility Reference Utility Guide

187

Force a password prompt.

Examples
To remove the language pltcl from the mydatabase database:

droplang pltcl mydatabase

See Also
DROP LANGUAGE in the Greenplum Database Reference Guide

Client Utility Reference Utility Guide

188

dropuser
Removes a database role.

Synopsis
dropuser [connection_option ...] [-e] [-i] role_name

dropuser --help

dropuser --version

Description
dropuser removes an existing role from Greenplum Database. Only superusers and users with the
CREATEROLE privilege can remove roles. To remove a superuser role, you must yourself be a superuser.

dropuser is a wrapper around the SQL command DROP ROLE.

Options
role_name

The name of the role to be removed. You will be prompted for a name if not specified on the
command line.

-e | --echo

Echo the commands that dropuser generates and sends to the server.

-i | --interactive

Prompt for confirmation before actually removing the role.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

-W | --password

Force a password prompt.

Examples
To remove the role joe using default connection options:

dropuser joe

Client Utility Reference Utility Guide

189

DROP ROLE

To remove the role joe using connection options, with verification, and a peek at the underlying command:

dropuser -p 54321 -h masterhost -i -e joe
Role "joe" will be permanently removed.
Are you sure? (y/n) y
DROP ROLE "joe"
DROP ROLE

See Also
DROP ROLE in the Greenplum Database Reference Guide

Client Utility Reference Utility Guide

190

pg_config
Retrieves information about the installed version of Greenplum Database.

Synopsis
pg_config [option ...]

Description
The pg_config utility prints configuration parameters of the currently installed version of Greenplum
Database. It is intended, for example, to be used by software packages that want to interface to Greenplum
Database to facilitate finding the required header files and libraries. Note that information printed out by
pg_config is for the Greenplum Database master only.

If more than one option is given, the information is printed in that order, one item per line. If no options are
given, all available information is printed, with labels.

Options
--bindir

Print the location of user executables. Use this, for example, to find the psql program. This is
normally also the location where the pg_config program resides.

--docdir

Print the location of documentation files.

--includedir

Print the location of C header files of the client interfaces.

--pkgincludedir

Print the location of other C header files.

--includedir-server

Print the location of C header files for server programming.

--libdir

Print the location of object code libraries.

--pkglibdir

Print the location of dynamically loadable modules, or where the server would search for
them. (Other architecture-dependent data files may also be installed in this directory.)

--localedir

Print the location of locale support files.

--mandir

Print the location of manual pages.

--sharedir

Print the location of architecture-independent support files.

--sysconfdir

Print the location of system-wide configuration files.

--pgxs

Print the location of extension makefiles.

--configure

Client Utility Reference Utility Guide

191

Print the options that were given to the configure script when Greenplum Database was
configured for building.

--cc

Print the value of the CC variable that was used for building Greenplum Database. This
shows the C compiler used.

--cppflags

Print the value of the CPPFLAGS variable that was used for building Greenplum Database.
This shows C compiler switches needed at preprocessing time.

--cflags

Print the value of the CFLAGS variable that was used for building Greenplum Database. This
shows C compiler switches.

--cflags_sl

Print the value of the CFLAGS_SL variable that was used for building Greenplum Database.
This shows extra C compiler switches used for building shared libraries.

--ldflags

Print the value of the LDFLAGS variable that was used for building Greenplum Database. This
shows linker switches.

--ldflags_sl

Print the value of the LDFLAGS_SL variable that was used for building Greenplum Database.
This shows linker switches used for building shared libraries.

--libs

Print the value of the LIBS variable that was used for building Greenplum Database. This
normally contains -l switches for external libraries linked into Greenplum Database.

--version

Print the version of Greenplum Database.

Examples
To reproduce the build configuration of the current Greenplum Database installation, run the following
command:

eval ./configure 'pg_config --configure'

The output of pg_config --configure contains shell quotation marks so arguments with spaces are
represented correctly. Therefore, using eval is required for proper results.

Client Utility Reference Utility Guide

192

pg_dump
Extracts a database into a single script file or other archive file.

Synopsis
pg_dump [connection_option ...] [dump_option ...] dbname

Description
pg_dump is a standard PostgreSQL utility for backing up a database, and is also supported in Greenplum
Database. It creates a single (non-parallel) dump file. For routine backups of Greenplum Database, it is
better to use the Greenplum Database backup utility, gpcrondump, for the best performance.

Use pg_dump if you are migrating your data to another database vendor's system, or to another Greenplum
Database system with a different segment configuration (for example, if the system you are migrating to
has greater or fewer segment instances). To restore, you must use the corresponding pg_restore utility (if
the dump file is in archive format), or you can use a client program such as psql (if the dump file is in plain
text format).

Since pg_dump is compatible with regular PostgreSQL, it can be used to migrate data into Greenplum
Database. The pg_dump utility in Greenplum Database is very similar to the PostgreSQL pg_dump utility,
with the following exceptions and limitations:

• If using pg_dump to backup a Greenplum Database database, keep in mind that the dump operation can
take a long time (several hours) for very large databases. Also, you must make sure you have sufficient
disk space to create the dump file.

• If you are migrating data from one Greenplum Database system to another, use the --gp-syntax
command-line option to include the DISTRIBUTED BY clause in CREATE TABLE statements. This ensures
that Greenplum Database table data is distributed with the correct distribution key columns upon
restore.

pg_dump makes consistent backups even if the database is being used concurrently. pg_dump does not
block other users accessing the database (readers or writers).

When used with one of the archive file formats and combined with pg_restore, pg_dump provides a
flexible archival and transfer mechanism. pg_dump can be used to backup an entire database, then
pg_restore can be used to examine the archive and/or select which parts of the database are to be
restored. The most flexible output file format is the custom format (-Fc). It allows for selection and
reordering of all archived items, and is compressed by default. The tar format (-Ft) is not compressed and
it is not possible to reorder data when loading, but it is otherwise quite flexible. It can be manipulated with
standard UNIX tools such as tar.

Note: The --ignore-version option is deprecated and will be removed in a future release.

Options
dbname

Specifies the name of the database to be dumped. If this is not specified, the environment
variable PGDATABASE is used. If that is not set, the user name specified for the connection is
used.

Dump Options
-a | --data-only

Dump only the data, not the schema (data definitions). This option is only meaningful for
the plain-text format. For the archive formats, you may specify the option when you call
pg_restore.

Client Utility Reference Utility Guide

193

-b | --blobs

Include large objects in the dump. This is the default behavior except when --schema, --
table, or --schema-only is specified, so the -b switch is only useful to add large objects to
selective dumps.

-c | --clean

Adds commands to the text output file to clean (drop) database objects prior to (the
commands for) creating them. Note that objects are not dropped before the dump operation
begins, but DROP commands are added to the DDL dump output files so that when you use
those files to do a restore, the DROP commands are run prior to the CREATE commands. This
option is only meaningful for the plain-text format. For the archive formats, you may specify
the option when you call pg_restore.

-C | --create

Begin the output with a command to create the database itself and reconnect to the created
database. (With a script of this form, it doesn't matter which database you connect to before
running the script.) This option is only meaningful for the plain-text format. For the archive
formats, you may specify the option when you call pg_restore.

-d | --inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very
slow; it is mainly useful for making dumps that can be loaded into non-PostgreSQL-based
databases. Also, since this option generates a separate command for each row, an error in
reloading a row causes only that row to be lost rather than the entire table contents. Note that
the restore may fail altogether if you have rearranged column order. The -D option is safe
against column order changes, though even slower.

-D | --column-inserts | --attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT
INTOtable(column, ...) VALUES ...). This will make restoration very slow; it is mainly
useful for making dumps that can be loaded into non-PostgreSQL-based databases. Also,
since this option generates a separate command for each row, an error in reloading a row
causes only that row to be lost rather than the entire table contents.

-E encoding | --encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in
the database encoding. (Another way to get the same result is to set the PGCLIENTENCODING
environment variable to the desired dump encoding.)

-f file | --file=file

Send output to the specified file. If this is omitted, the standard output is used.

-F p|c|t | --format=plain|custom|tar

Selects the format of the output. format can be one of the following:

p | plain — Output a plain-text SQL script file (the default).

c | custom — Output a custom archive suitable for input into pg_restore. This is the most
flexible format in that it allows reordering of loading data as well as object definitions. This
format is also compressed by default.

t | tar — Output a tar archive suitable for input into pg_restore. Using this archive format
allows reordering and/or exclusion of database objects at the time the database is restored. It
is also possible to limit which data is reloaded at restore time.

-i | --ignore-version

Note: This option is deprecated and will be removed in a future release.

Ignore version mismatch between pg_dump and the database server. pg_dump can dump from
servers running previous releases of Greenplum Database (or PostgreSQL), but very old

Client Utility Reference Utility Guide

194

versions may not be supported anymore. Use this option if you need to override the version
check.

-n schema | --schema=schema

Dump only schemas matching the schema pattern; this selects both the schema itself, and
all its contained objects. When this option is not specified, all non-system schemas in the
target database will be dumped. Multiple schemas can be selected by writing multiple -n
switches. Also, the schema parameter is interpreted as a pattern according to the same rules
used by psql's \d commands, so multiple schemas can also be selected by writing wildcard
characters in the pattern. When using wildcards, be careful to quote the pattern if needed to
prevent the shell from expanding the wildcards.

Note: When -n is specified, pg_dump makes no attempt to dump any other database objects
that the selected schema(s) may depend upon. Therefore, there is no guarantee that the
results of a specific-schema dump can be successfully restored by themselves into a clean
database.

Note: Non-schema objects such as blobs are not dumped when -n is specified.
You can add blobs back to the dump with the --blobs switch.

-N schema | --exclude-schema=schema

Do not dump any schemas matching the schema pattern. The pattern is interpreted
according to the same rules as for -n. -N can be given more than once to exclude schemas
matching any of several patterns. When both -n and -N are given, the behavior is to dump
just the schemas that match at least one -n switch but no -N switches. If -N appears without
-n, then schemas matching -N are excluded from what is otherwise a normal dump.

-o | --oids

Dump object identifiers (OIDs) as part of the data for every table. Use of this option is not
recommended for files that are intended to be restored into Greenplum Database.

-O | --no-owner

Do not output commands to set ownership of objects to match the original database. By
default, pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set
ownership of created database objects. These statements will fail when the script is run
unless it is started by a superuser (or the same user that owns all of the objects in the script).
To make a script that can be restored by any user, but will give that user ownership of all the
objects, specify -O. This option is only meaningful for the plain-text format. For the archive
formats, you may specify the option when you call pg_restore.

-s | --schema-only

Dump only the object definitions (schema), not data.

-S username | --superuser=username

Specify the superuser user name to use when disabling triggers. This is only relevant if --
disable-triggers is used. It is better to leave this out, and instead start the resulting script
as a superuser.

Note: Greenplum Database does not support user-defined triggers.

-t table | --table=table

Dump only tables (or views or sequences) matching the table pattern. Specify the table in the
format schema.table.

Multiple tables can be selected by writing multiple -t switches. Also, the table parameter
is interpreted as a pattern according to the same rules used by psql's \d commands, so
multiple tables can also be selected by writing wildcard characters in the pattern. When using
wildcards, be careful to quote the pattern if needed to prevent the shell from expanding the
wildcards. The -n and -N switches have no effect when -t is used, because tables selected
by -t will be dumped regardless of those switches, and non-table objects will not be dumped.

Client Utility Reference Utility Guide

195

Note: When -t is specified, pg_dump makes no attempt to dump any other
database objects that the selected table(s) may depend upon. Therefore, there
is no guarantee that the results of a specific-table dump can be successfully
restored by themselves into a clean database.

Also, -t cannot be used to specify a child table partition. To dump a partitioned
table, you must specify the parent table name.

-T table | --exclude-table=table

Do not dump any tables matching the table pattern. The pattern is interpreted according to
the same rules as for -t. -T can be given more than once to exclude tables matching any
of several patterns. When both -t and -T are given, the behavior is to dump just the tables
that match at least one -t switch but no -T switches. If -T appears without -t, then tables
matching -T are excluded from what is otherwise a normal dump.

-v | --verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and
start/stop times to the dump file, and progress messages to standard error.

-x | --no-privileges | --no-acl

Prevent dumping of access privileges (GRANT/REVOKE commands).

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be
quoted using SQL standard string syntax.

--disable-triggers

This option is only relevant when creating a data-only dump. It instructs pg_dump to include
commands to temporarily disable triggers on the target tables while the data is reloaded. Use
this if you have triggers on the tables that you do not want to invoke during data reload. The
commands emitted for --disable-triggers must be done as superuser. So, you should
also specify a superuser name with -S, or preferably be careful to start the resulting script as
a superuser. This option is only meaningful for the plain-text format. For the archive formats,
you may specify the option when you call pg_restore.

Note: Greenplum Database does not support user-defined triggers.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER
commands to determine object ownership. This makes the dump more standards compatible,
but depending on the history of the objects in the dump, may not restore properly. A dump
using SET SESSION AUTHORIZATION will require superuser privileges to restore correctly,
whereas ALTER OWNER requires lesser privileges.

--gp-syntax | --no-gp-syntax

Use --gp-syntax to dump Greenplum Database syntax in the CREATE TABLE statements.
This allows the distribution policy (DISTRIBUTED BY or DISTRIBUTED RANDOMLY clauses) of a
Greenplum Database table to be dumped, which is useful for restoring into other Greenplum
Database systems. The default is to include Greenplum Database syntax when connected to
a Greenplum Database system, and to exclude it when connected to a regular PostgreSQL
system.

-Z 0..9 | --compress=0..9

Specify the compression level to use in archive formats that support compression. Currently
only the custom archive format supports compression.

Connection Options
-h host| --host host

The host name of the machine on which the Greenplum Database master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to localhost.

Client Utility Reference Utility Guide

196

-p port| --port port

The TCP port on which the Greenplum Database master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username| --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt.

Notes
When a data-only dump is chosen and the option --disable-triggers is used, pg_dump emits commands
to disable triggers on user tables before inserting the data and commands to re-enable them after the data
has been inserted. If the restore is stopped in the middle, the system catalogs may be left in the wrong
state.

Members of tar archives are limited to a size less than 8 GB. (This is an inherent limitation of the tar file
format.) Therefore this format cannot be used if the textual representation of any one table exceeds that
size. The total size of a tar archive and any of the other output formats is not limited, except possibly by the
operating system.

The dump file produced by pg_dump does not contain the statistics used by the optimizer to make query
planning decisions. Therefore, it is wise to run ANALYZE after restoring from a dump file to ensure good
performance.

Examples
Dump a database called mydb into a SQL-script file:

pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

psql -d newdb -f db.sql

Dump a Greenplum Database in tar file format and include distribution policy information:

pg_dump -Ft --gp-syntax mydb > db.tar

To dump a database into a custom-format archive file:

pg_dump -Fc mydb > db.dump

To reload an archive file into a (freshly created) database named newdb:

pg_restore -d newdb db.dump

To dump a single table named mytab:

pg_dump -t mytab mydb > db.sql

To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the
name; else it will be folded to lower case. But double quotes are special to the shell, so in turn they must
be quoted. Thus, to dump a single table with a mixed-case name, you need something like:

pg_dump -t '"MixedCaseName"' mydb > mytab.sql

Client Utility Reference Utility Guide

197

See Also
pg_dumpall, pg_restore, psql

Client Utility Reference Utility Guide

198

pg_dumpall
Extracts all databases in a Greenplum Database system to a single script file or other archive file.

Synopsis
pg_dumpall [connection_option ...] [dump_option ...]

Description
pg_dumpall is a standard PostgreSQL utility for backing up all databases in a Greenplum Database (or
PostgreSQL) instance, and is also supported in Greenplum Database. It creates a single (non-parallel)
dump file. For routine backups of Greenplum Database it is better to use the Greenplum Database backup
utility, gpcrondump, for the best performance.

pg_dumpall creates a single script file that contains SQL commands that can be used as input to psql to
restore the databases. It does this by calling pg_dump for each database. pg_dumpall also dumps global
objects that are common to all databases. (pg_dump does not save these objects.) This currently includes
information about database users and groups, and access permissions that apply to databases as a whole.

Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute the
saved script in order to be allowed to add users and groups, and to create databases.

The SQL script will be written to the standard output. Shell operators should be used to redirect it into a file.

pg_dumpall needs to connect several times to the Greenplum Database master server (once per
database). If you use password authentication it is likely to ask for a password each time. It is convenient
to have a ~/.pgpass file in such cases.

Note: The --ignore-version option is deprecated and will be removed in a future release.

Options
Dump Options
-a | --data-only

Dump only the data, not the schema (data definitions). This option is only meaningful for
the plain-text format. For the archive formats, you may specify the option when you call
pg_restore.

-c | --clean

Output commands to clean (drop) database objects prior to (the commands for) creating
them. This option is only meaningful for the plain-text format. For the archive formats, you
may specify the option when you call pg_restore.

-d | --inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very
slow; it is mainly useful for making dumps that can be loaded into non-PostgreSQL-based
databases. Also, since this option generates a separate command for each row, an error in
reloading a row causes only that row to be lost rather than the entire table contents. Note that
the restore may fail altogether if you have rearranged column order. The -D option is safe
against column order changes, though even slower.

-D | --column-inserts | --attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table
(column, ...) VALUES ...). This will make restoration very slow; it is mainly useful for
making dumps that can be loaded into non-PostgreSQL-based databases. Also, since this

Client Utility Reference Utility Guide

199

option generates a separate command for each row, an error in reloading a row causes only
that row to be lost rather than the entire table contents.

-F | --filespaces

Dump filespace definitions.

-f filename | --file=filename

Send output to the specified file.

-g | --globals-only

Dump only global objects (roles and tablespaces), no databases.

-i | --ignore-version

Note: This option is deprecated and will be removed in a future release.

Ignore version mismatch between pg_dump and the database server. pg_dump can dump from
servers running previous releases of Greenplum Database (or PostgreSQL), but very old
versions may not be supported anymore. Use this option if you need to override the version
check.

-o | --oids

Dump object identifiers (OIDs) as part of the data for every table. Use of this option is not
recommended for files that are intended to be restored into Greenplum Database.

-O | --no-owner

Do not output commands to set ownership of objects to match the original database. By
default, pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set
ownership of created database objects. These statements will fail when the script is run
unless it is started by a superuser (or the same user that owns all of the objects in the script).
To make a script that can be restored by any user, but will give that user ownership of all the
objects, specify -O. This option is only meaningful for the plain-text format. For the archive
formats, you may specify the option when you call pg_restore.

-r | --resource-queues

Dump resource queue definitions.

-s | --schema-only

Dump only the object definitions (schema), not data.

-S username | --superuser=username

Specify the superuser user name to use when disabling triggers. This is only relevant if --
disable-triggers is used. It is better to leave this out, and instead start the resulting script
as a superuser.

Note: Greenplum Database does not support user-defined triggers.

-v | --verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and
start/stop times to the dump file, and progress messages to standard error.

-x | --no-privileges | --no-acl

Prevent dumping of access privileges (GRANT/REVOKE commands).

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be
quoted using SQL standard string syntax.

--disable-triggers

This option is only relevant when creating a data-only dump. It instructs pg_dumpall to
include commands to temporarily disable triggers on the target tables while the data is
reloaded. Use this if you have triggers on the tables that you do not want to invoke during

Client Utility Reference Utility Guide

200

data reload. The commands emitted for --disable-triggers must be done as superuser.
So, you should also specify a superuser name with -S, or preferably be careful to start the
resulting script as a superuser.

Note: Greenplum Database does not support user-defined triggers.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER
commands to determine object ownership. This makes the dump more standards compatible,
but depending on the history of the objects in the dump, may not restore properly. A dump
using SET SESSION AUTHORIZATION will require superuser privileges to restore correctly,
whereas ALTER OWNER requires lesser privileges.

--gp-syntax

Output Greenplum Database syntax in the CREATE TABLE statements. This allows the
distribution policy (DISTRIBUTED BY or DISTRIBUTED RANDOMLY clauses) of a Greenplum
Database table to be dumped, which is useful for restoring into other Greenplum Database
systems.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt.

Notes
Since pg_dumpall calls pg_dump internally, some diagnostic messages will refer to pg_dump.

Once restored, it is wise to run ANALYZE on each database so the query planner has useful statistics. You
can also run vacuumdb -a -z to analyze all databases.

pg_dumpall requires all needed tablespace (filespace) directories to exist before the restore or database
creation will fail for databases in non-default locations.

Examples
To dump all databases:

pg_dumpall > db.out

To reload this file:

psql template1 -f db.out

To dump only global objects (including filespaces and resource queues):

pg_dumpall -g -f -r

Client Utility Reference Utility Guide

201

See Also
pg_dump

Client Utility Reference Utility Guide

202

pg_restore
Restores a database from an archive file created by pg_dump.

Synopsis
pg_restore [connection_option ...] [restore_option ...] filename

Description
pg_restore is a utility for restoring a database from an archive created by pg_dump in one of the non-plain-
text formats. It will issue the commands necessary to reconstruct the database to the state it was in at the
time it was saved. The archive files also allow pg_restore to be selective about what is restored, or even
to reorder the items prior to being restored.

pg_restore can operate in two modes. If a database name is specified, the archive is restored directly
into the database. Otherwise, a script containing the SQL commands necessary to rebuild the database
is created and written to a file or standard output. The script output is equivalent to the plain text output
format of pg_dump. Some of the options controlling the output are therefore analogous to pg_dump options.

pg_restore cannot restore information that is not present in the archive file. For instance, if the archive
was made using the "dump data as INSERT commands" option, pg_restore will not be able to load the
data using COPY statements.

Note: The --ignore-version option is deprecated and will be removed in a future release.

Options
filename

Specifies the location of the archive file to be restored. If not specified, the standard input is
used.

Restore Options
-a | --data-only

Restore only the data, not the schema (data definitions).

-c | --clean

Clean (drop) database objects before recreating them.

-C | --create

Create the database before restoring into it. (When this option is used, the database named
with -d is used only to issue the initial CREATE DATABASE command. All data is restored into
the database name that appears in the archive.)

-d dbname | --dbname=dbname

Connect to this database and restore directly into this database. The default is to use the
PGDATABASE environment variable setting, or the same name as the current system user.

-e | --exit-on-error

Exit if an error is encountered while sending SQL commands to the database. The default is
to continue and to display a count of errors at the end of the restoration.

-f outfilename | --file=outfilename

Specify output file for generated script, or for the listing when used with -l. Default is the
standard output.

-F t |c | --format=tar | custom

Client Utility Reference Utility Guide

203

The format of the archive produced by pg_dump. It is not necessary to specify the format,
since pg_restore will determine the format automatically. Format can be either tar or
custom.

-i | --ignore-version

Note: This option is deprecated and will be removed in a future release.

Ignore database version checks.

-I index | --index=index

Restore definition of named index only.

-l | --list

List the contents of the archive. The output of this operation can be used with the -L option to
restrict and reorder the items that are restored.

-L list-file | --use-list=list-file

Restore elements in the list-file only, and in the order they appear in the file. Lines can be
moved and may also be commented out by placing a ; at the start of the line.

-n schema | --schema=schema

Restore only objects that are in the named schema. This can be combined with the -t option
to restore just a specific table.

-O | --no-owner

Do not output commands to set ownership of objects to match the original database. By
default, pg_restore issues ALTER OWNER or SET SESSION AUTHORIZATION statements
to set ownership of created schema elements. These statements will fail unless the initial
connection to the database is made by a superuser (or the same user that owns all of the
objects in the script). With -O, any user name can be used for the initial connection, and this
user will own all the created objects.

-P 'function-name(argtype [, ...])' | --function='function-name(argtype [, ...])'

Restore the named function only. The function name must be enclosed in quotes. Be careful
to spell the function name and arguments exactly as they appear in the dump file's table of
contents (as shown by the --list option).

-s | --schema-only

Restore only the schema (data definitions), not the data (table contents). Sequence current
values will not be restored, either. (Do not confuse this with the --schema option, which uses
the word schema in a different meaning.)

-S username | --superuser=username

Specify the superuser user name to use when disabling triggers. This is only relevant if --
disable-triggers is used.

Note: Greenplum Database does not support user-defined triggers.

-t table | --table=table

Restore definition and/or data of named table only.

-T trigger | --trigger=trigger

Restore named trigger only.

Note: Greenplum Database does not support user-defined triggers.

-v | --verbose

Specifies verbose mode.

-x | --no-privileges | --no-acl

Prevent restoration of access privileges (GRANT/REVOKE commands).

Client Utility Reference Utility Guide

204

--disable-triggers

This option is only relevant when performing a data-only restore. It instructs pg_restore
to execute commands to temporarily disable triggers on the target tables while the data is
reloaded. Use this if you have triggers on the tables that you do not want to invoke during
data reload. The commands emitted for --disable-triggers must be done as superuser.
So, you should also specify a superuser name with -S, or preferably run pg_restore as a
superuser.

Note: Greenplum Database does not support user-defined triggers.

--no-data-for-failed-tables

By default, table data is restored even if the creation command for the table failed (e.g.,
because it already exists). With this option, data for such a table is skipped. This behavior is
useful when the target database may already contain the desired table contents. Specifying
this option prevents duplicate or obsolete data from being loaded. This option is effective only
when restoring directly into a database, not when producing SQL script output.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

The TCP port on which the Greenplum Database master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt.

-1 | --single-transaction

Execute the restore as a single transaction. This ensures that either all the commands
complete successfully, or no changes are applied.

Notes
If your installation has any local additions to the template1 database, be careful to load the output of
pg_restore into a truly empty database; otherwise you are likely to get errors due to duplicate definitions
of the added objects. To make an empty database without any local additions, copy from template0 not
template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

When restoring data to a pre-existing table and the option --disable-triggers is used, pg_restore
emits commands to disable triggers on user tables before inserting the data then emits commands to re-
enable them after the data has been inserted. If the restore is stopped in the middle, the system catalogs
may be left in the wrong state.

pg_restore will not restore large objects for a single table. If an archive contains large objects, then all
large objects will be restored.

See also the pg_dump documentation for details on limitations of pg_dump.

Once restored, it is wise to run ANALYZE on each restored table so the query planner has useful statistics.

Client Utility Reference Utility Guide

205

Examples
Assume we have dumped a database called mydb into a custom-format dump file:

pg_dump -Fc mydb > db.dump

To drop the database and recreate it from the dump:

dropdb mydb
pg_restore -C -d template1 db.dump

To reload the dump into a new database called newdb. Notice there is no -C, we instead connect directly
to the database to be restored into. Also note that we clone the new database from template0 not
template1, to ensure it is initially empty:

createdb -T template0 newdb
pg_restore -d newdb db.dump

To reorder database items, it is first necessary to dump the table of contents of the archive:

pg_restore -l db.dump > db.list

The listing file consists of a header and one line for each item, for example,

; Archive created at Fri Jul 28 22:28:36 2006
; dbname: mydb
; TOC Entries: 74
; Compression: 0
; Dump Version: 1.4-0
; Format: CUSTOM
;
; Selected TOC Entries:
;
2; 145344 TABLE species postgres
3; 145344 ACL species
4; 145359 TABLE nt_header postgres
5; 145359 ACL nt_header
6; 145402 TABLE species_records postgres
7; 145402 ACL species_records
8; 145416 TABLE ss_old postgres
9; 145416 ACL ss_old
10; 145433 TABLE map_resolutions postgres
11; 145433 ACL map_resolutions
12; 145443 TABLE hs_old postgres
13; 145443 ACL hs_old

Semicolons start a comment, and the numbers at the start of lines refer to the internal archive ID assigned
to each item. Lines in the file can be commented out, deleted, and reordered. For example,

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

Could be used as input to pg_restore and would only restore items 10 and 6, in that order:

pg_restore -L db.list db.dump

See Also
pg_dump

Client Utility Reference Utility Guide

206

psql
Interactive command-line interface for Greenplum Database

Synopsis
psql [option ...] [dbname [username]]

Description
psql is a terminal-based front-end to Greenplum Database. It enables you to type in queries interactively,
issue them to Greenplum Database, and see the query results. Alternatively, input can be from a file. In
addition, it provides a number of meta-commands and various shell-like features to facilitate writing scripts
and automating a wide variety of tasks.

Options
-a | --echo-all

Print all input lines to standard output as they are read. This is more useful for script
processing rather than interactive mode.

-A | --no-align

Switches to unaligned output mode. (The default output mode is aligned.)

-c 'command' | --command 'command'

Specifies that psql is to execute the specified command string, and then exit. This is useful
in shell scripts. command must be either a command string that is completely parseable
by the server, or a single backslash command. Thus you cannot mix SQL and psql meta-
commands with this option. To achieve that, you could pipe the string into psql, like this:

echo '\x \\ SELECT * FROM foo;' | psql

(\\ is the separator meta-command.)

If the command string contains multiple SQL commands, they are processed in a single
transaction, unless there are explicit BEGIN/COMMIT commands included in the string to divide
it into multiple transactions. This is different from the behavior when the same string is fed to
psql's standard input.

-d dbname | --dbname dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as
the first non-option argument on the command line.

If this parameter contains an equals sign, it is treated as a conninfo string; for example you
can pass 'dbname=postgres user=username password=mypass' as dbname.

-e | --echo-queries

Copy all SQL commands sent to the server to standard output as well.

-E | --echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can use this
to study psql's internal operations.

-f filename | --file filename

Use a file as the source of commands instead of reading commands interactively. After the
file is processed, psql terminates. If filename is - (hyphen), then standard input is read.
Using this option is subtly different from writing psql <filename. In general, both will do

Client Utility Reference Utility Guide

207

what you expect, but using -f enables some nice features such as error messages with line
numbers.

-F separator | --field-separator separator

Use the specified separator as the field separator for unaligned output.

-H | --html

Turn on HTML tabular output.

-l | --list

List all available databases, then exit. Other non-connection options are ignored.

-L filename | --log-file filename

Write all query output into the specified log file, in addition to the normal output destination.

-o filename | --output filename

Put all query output into the specified file.

-P assignment | --pset assignment

Allows you to specify printing options in the style of \pset on the command line. Note that
here you have to separate name and value with an equal sign instead of a space. Thus to set
the output format to LaTeX, you could write -P format=latex.

-q | --quiet

Specifies that psql should do its work quietly. By default, it prints welcome messages and
various informational output. If this option is used, none of this happens. This is useful with
the -c option.

-R separator | --record-separator separator

Use separator as the record separator for unaligned output.

-s | --single-step

Run in single-step mode. That means the user is prompted before each command is sent to
the server, with the option to cancel execution as well. Use this to debug scripts.

-S | --single-line

Runs in single-line mode where a new line terminates an SQL command, as a semicolon
does.

-t | --tuples-only

Turn off printing of column names and result row count footers, etc. This command is
equivalent to \pset tuples_only and is provided for convenience.

-T table_options | --table-attr table_options

Allows you to specify options to be placed within the HTML table tag. See \pset for details.

-v assignment | --set assignment | --variable assignment

Perform a variable assignment, like the \set internal command. Note that you must separate
name and value, if any, by an equal sign on the command line. To unset a variable, leave
off the equal sign. To just set a variable without a value, use the equal sign but leave off
the value. These assignments are done during a very early stage of start-up, so variables
reserved for internal purposes might get overwritten later.

-V | --version

Print the psql version and exit.

-x | --expanded

Turn on the expanded table formatting mode.

-X | --no-psqlrc

Client Utility Reference Utility Guide

208

Do not read the start-up file (neither the system-wide psqlrc file nor the user's ~/.psqlrc
file).

-1 | --single-transaction

When psql executes a script with the -f option, adding this option wraps BEGIN/COMMIT
around the script to execute it as a single transaction. This ensures that either all the
commands complete successfully, or no changes are applied.

If the script itself uses BEGIN, COMMIT, or ROLLBACK, this option will not have the desired
effects. Also, if the script contains any command that cannot be executed inside a transaction
block, specifying this option will cause that command (and hence the whole transaction) to
fail.

-? | --help

Show help about psql command line arguments, and exit.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt. psql should automatically prompt for a password whenever the
server requests password authentication. However, currently password request detection is
not totally reliable, hence this option to force a prompt. If no password prompt is issued and
the server requires password authentication, the connection attempt will fail.

-w --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

Note: This option remains set for the entire session, and so it affects uses of the meta-
command \connect as well as the initial connection attempt.

Exit Status
psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of memory, file not found)
occurs, 2 if the connection to the server went bad and the session was not interactive, and 3 if an error
occurred in a script and the variable ON_ERROR_STOP was set.

Usage
Connecting to a Database

psql is a client application for Greenplum Database. In order to connect to a database you need to know
the name of your target database, the host name and port number of the Greenplum master server and
what database user name you want to connect as. psql can be told about those parameters via command
line options, namely -d, -h, -p, and -U respectively. If an argument is found that does not belong to any
option it will be interpreted as the database name (or the user name, if the database name is already
given). Not all these options are required; there are useful defaults. If you omit the host name, psql will
connect via a UNIX-domain socket to a master server on the local host, or via TCP/IP to localhost on

Client Utility Reference Utility Guide

209

machines that do not have UNIX-domain sockets. The default master port number is 5432. If you use a
different port for the master, you must specify the port. The default database user name is your UNIX user
name, as is the default database name. Note that you cannot just connect to any database under any user
name. Your database administrator should have informed you about your access rights.

When the defaults are not right, you can save yourself some typing by setting any or all of the environment
variables PGAPPNAME, PGDATABASE, PGHOST, PGPORT, and PGUSER to appropriate values.

It is also convenient to have a ~/.pgpass file to avoid regularly having to type in passwords. This file
should reside in your home directory and contain lines of the following format:

hostname:port:database:username:password

The permissions on .pgpass must disallow any access to world or group (for example: chmod 0600
~/.pgpass). If the permissions are less strict than this, the file will be ignored. (The file permissions are not
currently checked on Microsoft Windows clients, however.)

If the connection could not be made for any reason (insufficient privileges, server is not running, etc.), psql
will return an error and terminate.

Entering SQL Commands

In normal operation, psql provides a prompt with the name of the database to which psql is currently
connected, followed by the string => for a regular user or =# for a superuser. For example:

testdb=>
testdb=#

At the prompt, the user may type in SQL commands. Ordinarily, input lines are sent to the server when
a command-terminating semicolon is reached. An end of line does not terminate a command. Thus
commands can be spread over several lines for clarity. If the command was sent and executed without
error, the results of the command are displayed on the screen.

Meta-Commands
Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is
processed by psql itself. These commands help make psql more useful for administration or scripting.
Meta-commands are more commonly called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

To include whitespace into an argument you may quote it with a single quote. To include a single quote
into such an argument, use two single quotes. Anything contained in single quotes is furthermore subject to
C-like substitutions for \n (new line), \t (tab), \digits (octal), and \xdigits (hexadecimal).

If an unquoted argument begins with a colon (:), it is taken as a psql variable and the value of the variable
is used as the argument instead.

Arguments that are enclosed in backquotes (`) are taken as a command line that is passed to the shell.
The output of the command (with any trailing newline removed) is taken as the argument value. The above
escape sequences also apply in backquotes.

Some commands take an SQL identifier (such as a table name) as argument. These arguments follow
the syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (") protect letters
from case conversion and allow incorporation of whitespace into the identifier. Within double quotes,
paired double quotes reduce to a single double quote in the resulting name. For example, FOO"BAR"BAZ is
interpreted as fooBARbaz, and "A weird"" name" becomes A weird" name.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as the beginning
of a new meta-command. The special sequence \\ (two backslashes) marks the end of arguments and

Client Utility Reference Utility Guide

210

continues parsing SQL commands, if any. That way SQL and psql commands can be freely mixed on a
line. But in any case, the arguments of a meta-command cannot continue beyond the end of the line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, it is switched to aligned. If it is not unaligned, it
is set to unaligned. This command is kept for backwards compatibility. See \pset for a more
general solution.

\cd [directory]

Changes the current working directory. Without argument, changes to the current user's
home directory. To print your current working directory, use \!pwd.

\C [title]

Sets the title of any tables being printed as the result of a query or unset any such title. This
command is equivalent to \pset title.

\c | \connect [dbname [username] [host] [port]]

Establishes a new connection. If the new connection is successfully made, the previous
connection is closed. If any of dbname, username, host or port are omitted, the value of that
parameter from the previous connection is used. If the connection attempt failed, the previous
connection will only be kept if psql is in interactive mode. When executing a non-interactive
script, processing will immediately stop with an error. This distinction was chosen as a user
convenience against typos, and a safety mechanism that scripts are not accidentally acting
on the wrong database.

\conninfo

Displays information about the current connection including the database name, the user
name, the type of connection (UNIX domain socket, TCP/IP, etc.), the host, and the port.

\copy {table [(column_list)] | (query)} {from | to} {filename | stdin | stdout | pstdin | pstdout}
[with] [binary] [oids] [delimiter [as] 'character'] [null [as] 'string'] [csv [header] [quote [as]
'character'] [escape [as] 'character'] [force quote column_list] [force not null column_list]]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY command, but
instead of the server reading or writing the specified file, psql reads or writes the file and
routes the data between the server and the local file system. This means that file accessibility
and privileges are those of the local user, not the server, and no SQL superuser privileges
are required.

The syntax of the command is similar to that of the SQL COPY command. Note that, because
of this, special parsing rules apply to the \copy command. In particular, the variable
substitution rules and backslash escapes do not apply.

\copy ... from stdin | to stdout reads/writes based on the command input and output
respectively. All rows are read from the same source that issued the command, continuing
until \. is read or the stream reaches EOF. Output is sent to the same place as command
output. To read/write from psql's standard input or output, use pstdin or pstdout. This
option is useful for populating tables in-line within a SQL script file.

This operation is not as efficient as the SQL COPY command because all data must pass
through the client/server connection.

\copyright

Shows the copyright and distribution terms of PostgreSQL on which Greenplum Database is
based.

\d [relation_pattern] | \d+ [relation_pattern] | \dS [relation_pattern]

For each relation (table, external table, view, index, or sequence) matching the relation
pattern, show all columns, their types, the tablespace (if not the default) and any special

Client Utility Reference Utility Guide

211

attributes such as NOT NULL or defaults, if any. Associated indexes, constraints, rules, and
triggers are also shown, as is the view definition if the relation is a view.

• The command form \d+ is identical, except that more information is displayed: any
comments associated with the columns of the table are shown, as is the presence of OIDs
in the table.

For partitioned tables, the command \d or \d+ specified with the root partition table or
child partition table displays information about the table including partition keys on the
current level of the partition table. The command \d+ also displays the immediate child
partitions of the table and whether the child partition is an external table or regular table.

For append-optimized tables and column-oriented tables, \d+ displays the storage options
for a table. For append-optimized tables, the options are displayed for the table. For
column-oriented tables, storage options are displayed for each column.

• The command form \dS is identical, except that system information is displayed as well
as user information.For example, \dt displays user tables, but not system tables; \dtS
displays both user and system tables.Both these commands can take the + parameter to
display additional information, as in \dt+ and \dtS+.

If \d is used without a pattern argument, it is equivalent to \dtvs which will show a list of
all tables, views, and sequences.

\da [aggregate_pattern]

Lists all available aggregate functions, together with the data types they operate on. If a
pattern is specified, only aggregates whose names match the pattern are shown.

\db [tablespace_pattern] | \db+ [tablespace_pattern]

Lists all available tablespaces and their corresponding filespace locations. If pattern is
specified, only tablespaces whose names match the pattern are shown. If + is appended to
the command name, each object is listed with its associated permissions.

\dc [conversion_pattern]

Lists all available conversions between character-set encodings. If pattern is specified, only
conversions whose names match the pattern are listed.

\dC

Lists all available type casts.

\dd [object_pattern]

Lists all available objects. If pattern is specified, only matching objects are shown.

\dD [domain_pattern]

Lists all available domains. If pattern is specified, only matching domains are shown.

\df [function_pattern] | \df+ [function_pattern]

Lists available functions, together with their argument and return types. If pattern is specified,
only functions whose names match the pattern are shown. If the form \df+ is used, additional
information about each function, including language and description, is shown. To reduce
clutter, \df does not show data type I/O functions. This is implemented by ignoring functions
that accept or return type cstring.

\dg [role_pattern]

Lists all database roles. If pattern is specified, only those roles whose names match the
pattern are listed.

\distPvxS [index | sequence | table | parent table | view | external_table | system_object]

This is not the actual command name: the letters i, s, t, P, v, x, S stand for index, sequence,
table, parent table, view, external table, and system table, respectively. You can specify any
or all of these letters, in any order, to obtain a listing of all the matching objects. The letter S
restricts the listing to system objects; without S, only non-system objects are shown. If + is

Client Utility Reference Utility Guide

212

appended to the command name, each object is listed with its associated description, if any.
If a pattern is specified, only objects whose names match the pattern are listed.

\dl

This is an alias for \lo_list, which shows a list of large objects.

\dn [schema_pattern] | \dn+ [schema_pattern]

Lists all available schemas (namespaces). If pattern is specified, only schemas whose names
match the pattern are listed. Non-local temporary schemas are suppressed. If + is appended
to the command name, each object is listed with its associated permissions and description, if
any.

\do [operator_pattern]

Lists available operators with their operand and return types. If pattern is specified, only
operators whose names match the pattern are listed.

\dp [relation_pattern_to_show_privileges]

Produces a list of all available tables, views and sequences with their associated access
privileges. If pattern is specified, only tables, views and sequences whose names match the
pattern are listed. The GRANT and REVOKE commands are used to set access privileges.

\dT [datatype_pattern] | \dT+ [datatype_pattern]

Lists all data types or only those that match pattern. The command form \dT+ shows extra
information.

\du [role_pattern]

Lists all database roles, or only those that match pattern.

\e | \edit [filename]

If a file name is specified, the file is edited; after the editor exits, its content is copied back to
the query buffer. If no argument is given, the current query buffer is copied to a temporary file
which is then edited in the same fashion. The new query buffer is then re-parsed according to
the normal rules of psql, where the whole buffer is treated as a single line. (Thus you cannot
make scripts this way. Use \i for that.) This means also that if the query ends with (or rather
contains) a semicolon, it is immediately executed. In other cases it will merely wait in the
query buffer.

psql searches the environment variables PSQL_EDITOR, EDITOR, and VISUAL (in that order)
for an editor to use. If all of them are unset, vi is used on UNIX systems, notepad.exe on
Windows systems.

\echotext [...]

Prints the arguments to the standard output, separated by one space and followed by a
newline. This can be useful to intersperse information in the output of scripts.

If you use the \o command to redirect your query output you may wish to use 'echo instead
of this command.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows the
current encoding.

\f [field_separator_string]

Sets the field separator for unaligned query output. The default is the vertical bar (|). See
also \pset for a generic way of setting output options.

\g [{filename | |command }]

Sends the current query input buffer to the server and optionally stores the query's output in
a file or pipes the output into a separate UNIX shell executing command. A bare \g is virtually
equivalent to a semicolon. A \g with argument is a one-shot alternative to the \o command.

Client Utility Reference Utility Guide

213

\h | \help [sql_command]

Gives syntax help on the specified SQL command. If a command is not specified, then psql
will list all the commands for which syntax help is available. Use an asterisk (*) to show
syntax help on all SQL commands. To simplify typing, commands that consists of several
words do not have to be quoted.

\H

Turns on HTML query output format. If the HTML format is already on, it is switched back to
the default aligned text format. This command is for compatibility and convenience, but see
\pset about setting other output options.

\i input_filename

Reads input from a file and executes it as though it had been typed on the keyboard. If you
want to see the lines on the screen as they are read you must set the variable ECHO to all.

\l | \list | \l+ | \list+

List the names, owners, and character set encodings of all the databases in the server. If + is
appended to the command name, database descriptions are also displayed.

\lo_export loid filename

Reads the large object with OID loid from the database and writes it to filename. Note that
this is subtly different from the server function lo_export, which acts with the permissions of
the user that the database server runs as and on the server's file system. Use \lo_list to
find out the large object's OID.

\lo_import large_object_filename [comment]

Stores the file into a large object. Optionally, it associates the given comment with the object.
Example:

mydb=> \lo_import '/home/gpadmin/pictures/photo.xcf' 'a
picture of me'
lo_import 152801

The response indicates that the large object received object ID 152801 which one ought to
remember if one wants to access the object ever again. For that reason it is recommended
to always associate a human-readable comment with every object. Those can then be seen
with the \lo_list command. Note that this command is subtly different from the server-side
lo_import because it acts as the local user on the local file system, rather than the server's
user and file system.

\lo_list

Shows a list of all large objects currently stored in the database, along with any comments
provided for them.

\lo_unlink largeobject_oid

Deletes the large object of the specified OID from the database. Use \lo_list to find out the
large object's OID.

\o [{query_result_filename | |command}]

Saves future query results to a file or pipes them into a UNIX shell command. If no arguments
are specified, the query output will be reset to the standard output. Query results include
all tables, command responses, and notices obtained from the database server, as well as
output of various backslash commands that query the database (such as \d), but not error
messages. To intersperse text output in between query results, use 'echo.

\p

Print the current query buffer to the standard output.

\password [username]

Client Utility Reference Utility Guide

214

Changes the password of the specified user (by default, the current user). This command
prompts for the new password, encrypts it, and sends it to the server as an ALTER ROLE
command. This makes sure that the new password does not appear in cleartext in the
command history, the server log, or elsewhere.

\prompt [text] name

Prompts the user to set a variable name. Optionally, you can specify a prompt. Enclose
prompts longer than one word in single quotes.

By default, \prompt uses the terminal for input and output. However, use the -f command line
switch to specify standard input and standard output.

\pset print_option [value]

This command sets options affecting the output of query result tables. print_option describes
which option is to be set. Adjustable printing options are:

• format – Sets the output format to one of unaligned, aligned, html, latex, troff-ms, or
wrapped. First letter abbreviations are allowed. Unaligned writes all columns of a row on
a line, separated by the currently active field separator. This is intended to create output
that might be intended to be read in by other programs. Aligned mode is the standard,
human-readable, nicely formatted text output that is default. The HTML and LaTeX modes
put out tables that are intended to be included in documents using the respective mark-up
language. They are not complete documents! (This might not be so dramatic in HTML, but
in LaTeX you must have a complete document wrapper.)

The wrapped option sets the output format like the aligned parameter , but wraps
wide data values across lines to make the output fit in the target column width. The
target width is set with the columns option. To specify the column width and select the
wrapped format, use two \pset commands; for example, to set the with to 72 columns and
specify wrapped format, use the commands \pset columns 72 and then \pset format
wrapped.

Note: Since psql does not attempt to wrap column header titles, the
wrapped format behaves the same as aligned if the total width needed for
column headers exceeds the target.

• border – The second argument must be a number. In general, the higher the number the
more borders and lines the tables will have, but this depends on the particular format. In
HTML mode, this will translate directly into the border=... attribute, in the others only
values 0 (no border), 1 (internal dividing lines), and 2 (table frame) make sense.

• columns – Sets the target width for the wrapped format, and also the width limit for
determining whether output is wide enough to require the pager. The default is zero.
Zero causes the target width to be controlled by the environment variable COLUMNS, or
the detected screen width if COLUMNS is not set. In addition, if columns is zero then the
wrapped format affects screen output only. If columns is nonzero then file and pipe output
is wrapped to that width as well.

After setting the target width, use the command \pset format wrapped to enable the
wrapped format.

• expanded | x) – Toggles between regular and expanded format. When expanded format
is enabled, query results are displayed in two columns, with the column name on the left
and the data on the right. This mode is useful if the data would not fit on the screen in the
normal horizontal mode. Expanded mode is supported by all four output formats.

• linestyle [unicode | ascii | old-ascii] – Sets the border line drawing style to one
of unicode, ascii, or old-ascii. Unique abbreviations, including one letter, are allowed for
the three styles. The default setting is ascii. This option only affects the aligned and
wrapped output formats.

ascii – uses plain ASCII characters. Newlines in data are shown using a + symbol in the
right-hand margin. When the wrapped format wraps data from one line to the next without

Client Utility Reference Utility Guide

215

a newline character, a dot (.) is shown in the right-hand margin of the first line, and again
in the left-hand margin of the following line.

old-ascii – style uses plain ASCII characters, using the formatting style used in
PostgreSQL 8.4 and earlier. Newlines in data are shown using a : symbol in place of the
left-hand column separator. When the data is wrapped from one line to the next without a
newline character, a ; symbol is used in place of the left-hand column separator.

unicode – style uses Unicode box-drawing characters. Newlines in data are shown using
a carriage return symbol in the right-hand margin. When the data is wrapped from one
line to the next without a newline character, an ellipsis symbol is shown in the right-hand
margin of the first line, and again in the left-hand margin of the following line.

When the border setting is greater than zero, this option also determines the characters
with which the border lines are drawn. Plain ASCII characters work everywhere, but
Unicode characters look nicer on displays that recognize them.

• null 'string' – The second argument is a string to print whenever a column is null.
The default is not to print anything, which can easily be mistaken for an empty string. For
example, the command \psetnull '(empty)' displays (empty) in null columns.

• fieldsep – Specifies the field separator to be used in unaligned output mode. That way
one can create, for example, tab- or comma-separated output, which other programs
might prefer. To set a tab as field separator, type \pset fieldsep '\t'. The default field
separator is '|' (a vertical bar).

• footer – Toggles the display of the default footer (x rows).

• numericlocale – Toggles the display of a locale-aware character to separate groups of
digits to the left of the decimal marker. It also enables a locale-aware decimal marker.

• recordsep – Specifies the record (line) separator to use in unaligned output mode. The
default is a newline character.

• title [text] – Sets the table title for any subsequently printed tables. This can be used to
give your output descriptive tags. If no argument is given, the title is unset.

• tableattr | T [text] – Allows you to specify any attributes to be placed inside the HTML
table tag. This could for example be cellpadding or bgcolor. Note that you probably
don't want to specify border here, as that is already taken care of by \pset border.

• tuples_only | t [novalue | on | off] – The \pset tuples_only command by itselt
toggles between tuples only and full display. The values on and off set the tuples display,
regardless of the current setting. Full display may show extra information such as column
headers, titles, and various footers. In tuples only mode, only actual table data is shown
The \t command is equivalent to \psettuples_only and is provided for convenience.

• pager – Controls the use of a pager for query and psql help output. When on, if the
environment variable PAGER is set, the output is piped to the specified program. Otherwise
a platform-dependent default (such as more) is used. When off, the pager is not used.
When on, the pager is used only when appropriate. Pager can also be set to always,
which causes the pager to be always used.

\q

Quits the psql program.

\qechotext [...]

This command is identical to \echo except that the output will be written to the query output
channel, as set by \o.

\r

Resets (clears) the query buffer.

\s [history_filename]

Print or save the command line history to filename. If filename is omitted, the history is written
to the standard output.

Client Utility Reference Utility Guide

216

\set [name [value [...]]]

Sets the internal variable name to value or, if more than one value is given, to the
concatenation of all of them. If no second argument is given, the variable is just set with no
value. To unset a variable, use the \unset command.

Valid variable names can contain characters, digits, and underscores. See "Variables" in
Advanced Features. Variable names are case-sensitive.

Although you are welcome to set any variable to anything you want, psql treats several
variables as special. They are documented in the topic about variables.

This command is totally separate from the SQL command SET.

\t [novalue | on | off]

The \t command by itself toggles a display of output column name headings and row count
footer. The values on and off set the tuples display, regardless of the current setting.This
command is equivalent to \pset tuples_only and is provided for convenience.

\T table_options

Allows you to specify attributes to be placed within the table tag in HTML tabular output
mode.

\timing [novalue | on | off]

The \timing command by itself toggles a display of how long each SQL statement takes, in
milliseconds. The values on and off set the time display, regardless of the current setting.

\w {filename | |command}

Outputs the current query buffer to a file or pipes it to a UNIX command.

\x

Toggles expanded table formatting mode.

\z [relation_to_show_privileges]

Produces a list of all available tables, views and sequences with their associated access
privileges. If a pattern is specified, only tables, views and sequences whose names match the
pattern are listed. This is an alias for \dp.

\! [command]

Escapes to a separate UNIX shell or executes the UNIX command. The arguments are not
further interpreted, the shell will see them as is.

\?

Shows help information about the psql backslash commands.

Patterns
The various \d commands accept a pattern parameter to specify the object name(s) to be displayed.
In the simplest case, a pattern is just the exact name of the object. The characters within a pattern are
normally folded to lower case, just as in SQL names; for example, \dt FOO will display the table named
foo. As in SQL names, placing double quotes around a pattern stops folding to lower case. Should you
need to include an actual double quote character in a pattern, write it as a pair of double quotes within a
double-quote sequence; again this is in accord with the rules for SQL quoted identifiers. For example, \dt
"FOO""BAR" will display the table named FOO"BAR (not foo"bar). Unlike the normal rules for SQL names,
you can put double quotes around just part of a pattern, for instance \dt FOO"FOO"BAR will display the
table named fooFOObar.

Within a pattern, * matches any sequence of characters (including no characters) and ? matches any
single character. (This notation is comparable to UNIX shell file name patterns.) For example, \dt int*
displays all tables whose names begin with int. But within double quotes, * and ? lose these special
meanings and are just matched literally.

Client Utility Reference Utility Guide

217

A pattern that contains a dot (.) is interpreted as a schema name pattern followed by an object name
pattern. For example, \dt foo*.bar* displays all tables whose table name starts with bar that are in
schemas whose schema name starts with foo. When no dot appears, then the pattern matches only
objects that are visible in the current schema search path. Again, a dot within double quotes loses its
special meaning and is matched literally.

Advanced users can use regular-expression notations. All regular expression special characters work
as specified in the PostgreSQL documentation on regular expressions, except for . which is taken as a
separator as mentioned above, * which is translated to the regular-expression notation .*, and ? which
is translated to .. You can emulate these pattern characters at need by writing ? for .,(R+|) for R*, or
(R|) for R?. Remember that the pattern must match the whole name, unlike the usual interpretation of
regular expressions; write * at the beginning and/or end if you don't wish the pattern to be anchored. Note
that within double quotes, all regular expression special characters lose their special meanings and are
matched literally. Also, the regular expression special characters are matched literally in operator name
patterns (such as the argument of \do).

Whenever the pattern parameter is omitted completely, the \d commands display all objects that are
visible in the current schema search path – this is equivalent to using the pattern *. To see all objects in
the database, use the pattern *.*.

Advanced Features
Variables

psql provides variable substitution features similar to common UNIX command shells. Variables are simply
name/value pairs, where the value can be any string of any length. To set variables, use the psql meta-
command \set:

testdb=> \set foo bar

sets the variable foo to the value bar. To retrieve the content of the variable, precede the name with a
colon and use it as the argument of any slash command:

testdb=> \echo :foo
bar

Note: The arguments of \set are subject to the same substitution rules as with other commands.
Thus you can construct interesting references such as \set :foo 'something' and get 'soft
links' or 'variable variables' of Perl or PHP fame, respectively. Unfortunately, there is no way to do
anything useful with these constructs. On the other hand, \set bar :foo is a perfectly valid way to
copy a variable.

If you call \set without a second argument, the variable is set, with an empty string as value. To unset (or
delete) a variable, use the command \unset.

psql's internal variable names can consist of letters, numbers, and underscores in any order and any
number of them. A number of these variables are treated specially by psql. They indicate certain option
settings that can be changed at run time by altering the value of the variable or represent some state of
the application. Although you can use these variables for any other purpose, this is not recommended, as
the program behavior might behave unexpectedly. By convention, all specially treated variables consist of
all upper-case letters (and possibly numbers and underscores). To ensure maximum compatibility in the
future, avoid using such variable names for your own purposes. A list of all specially treated variables are
as follows:

AUTOCOMMIT

When on (the default), each SQL command is automatically committed upon successful
completion. To postpone commit in this mode, you must enter a BEGIN or START
TRANSACTION SQL command. When off or unset, SQL commands are not committed until you
explicitly issue COMMIT or END. The autocommit-on mode works by issuing an implicit BEGIN
for you, just before any command that is not already in a transaction block and is not itself a

https://www.postgresql.org/docs/8.2/static/functions-matching.html#FUNCTIONS-POSIX-REGEXP

Client Utility Reference Utility Guide

218

BEGIN or other transaction-control command, nor a command that cannot be executed inside
a transaction block (such as VACUUM).

In autocommit-off mode, you must explicitly abandon any failed transaction by entering ABORT
or ROLLBACK. Also keep in mind that if you exit the session without committing, your work will
be lost.

The autocommit-on mode is PostgreSQL's traditional behavior, but autocommit-off is closer
to the SQL spec. If you prefer autocommit-off, you may wish to set it in your ~/.psqlrc file.

DBNAME

The name of the database you are currently connected to. This is set every time you connect
to a database (including program start-up), but can be unset.

ECHO

If set to all, all lines entered from the keyboard or from a script are written to the standard
output before they are parsed or executed. To select this behavior on program start-up, use
the switch -a. If set to queries, psql merely prints all queries as they are sent to the server.
The switch for this is -e.

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query is
first shown. This way you can study the Greenplum Database internals and provide similar
functionality in your own programs. (To select this behavior on program start-up, use the
switch -E.) If you set the variable to the value noexec, the queries are just shown but are not
actually sent to the server and executed.

ENCODING

The current client character set encoding.

FETCH_COUNT

If this variable is set to an integer value > 0, the results of SELECT queries are fetched and
displayed in groups of that many rows, rather than the default behavior of collecting the entire
result set before display. Therefore only a limited amount of memory is used, regardless of
the size of the result set. Settings of 100 to 1000 are commonly used when enabling this
feature. Keep in mind that when using this feature, a query may fail after having already
displayed some rows.

Although you can use any output format with this feature, the default aligned format tends to
look bad because each group of FETCH_COUNT rows will be formatted separately, leading to
varying column widths across the row groups. The other output formats work better.

HISTCONTROL

If this variable is set to ignorespace, lines which begin with a space are not entered into
the history list. If set to a value of ignoredups, lines matching the previous history line are
not entered. A value of ignoreboth combines the two options. If unset, or if set to any other
value than those above, all lines read in interactive mode are saved on the history list.

HISTFILE

The file name that will be used to store the history list. The default value is
~/.psql_history. For example, putting

\set HISTFILE ~/.psql_history- :DBNAME

in ~/.psqlrc will cause psql to maintain a separate history for each database.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

HOST

Client Utility Reference Utility Guide

219

The database server host you are currently connected to. This is set every time you connect
to a database (including program start-up), but can be unset.

IGNOREEOF

If unset, sending an EOF character (usually CTRL+D) to an interactive session of psql will
terminate the application. If set to a numeric value, that many EOF characters are ignored
before the application terminates. If the variable is set but has no numeric value, the default is
10.

LASTOID

The value of the last affected OID, as returned from an INSERT or lo_insert command. This
variable is only guaranteed to be valid until after the result of the next SQL command has
been displayed.

ON_ERROR_ROLLBACK

When on, if a statement in a transaction block generates an error, the error is ignored and the
transaction continues. When interactive, such errors are only ignored in interactive sessions,
and not when reading script files. When off (the default), a statement in a transaction block
that generates an error aborts the entire transaction. The on_error_rollback-on mode works
by issuing an implicit SAVEPOINT for you, just before each command that is in a transaction
block, and rolls back to the savepoint on error.

ON_ERROR_STOP

By default, if non-interactive scripts encounter an error, such as a malformed SQL command
or internal meta-command, processing continues. This has been the traditional behavior
of psql but it is sometimes not desirable. If this variable is set, script processing will
immediately terminate. If the script was called from another script it will terminate in the same
fashion. If the outermost script was not called from an interactive psql session but rather
using the -f option, psql will return error code 3, to distinguish this case from fatal error
conditions (error code 1).

PORT

The database server port to which you are currently connected. This is set every time you
connect to a database (including program start-up), but can be unset.

PROMPT1
PROMPT2
PROMPT3

These specify what the prompts psql issues should look like. See "Prompting".

QUIET

This variable is equivalent to the command line option -q. It is not very useful in interactive
mode.

SINGLELINE

This variable is equivalent to the command line option -S.

SINGLESTEP

This variable is equivalent to the command line option -s.

USER

The database user you are currently connected as. This is set every time you connect to a
database (including program start-up), but can be unset.

VERBOSITY

This variable can be set to the values default, verbose, or terse to control the verbosity of
error reports.

SQL Interpolation

Client Utility Reference Utility Guide

220

An additional useful feature of psql variables is that you can substitute (interpolate) them into regular SQL
statements. The syntax for this is again to prepend the variable name with a colon (:).

testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :foo;

would then query the table my_table. The value of the variable is copied literally, so it can even contain
unbalanced quotes or backslash commands. You must make sure that it makes sense where you put it.
Variable interpolation will not be performed into quoted SQL entities.

A popular application of this facility is to refer to the last inserted OID in subsequent statements to build a
foreign key scenario. Another possible use of this mechanism is to copy the contents of a file into a table
column. First load the file into a variable and then proceed as above.

testdb=> \set content '''' `cat my_file.txt` ''''
testdb=> INSERT INTO my_table VALUES (:content);

One problem with this approach is that my_file.txt might contain single quotes. These need to be
escaped so that they don't cause a syntax error when the second line is processed. This could be done
with the program sed:

testdb=> \set content '''' `sed -e "s/'/''/g" < my_file.txt`
''''

If you are using non-standard-conforming strings then you'll also need to double backslashes. This is a bit
tricky:

testdb=> \set content '''' `sed -e "s/'/''/g" -e
's/\\/\\\\/g' < my_file.txt` ''''

Note the use of different shell quoting conventions so that neither the single quote marks nor the
backslashes are special to the shell. Backslashes are still special to sed, however, so we need to double
them.

Since colons may legally appear in SQL commands, the following rule applies: the character sequence
":name" is not changed unless "name" is the name of a variable that is currently set. In any case you can
escape a colon with a backslash to protect it from substitution. (The colon syntax for variables is standard
SQL for embedded query languages, such as ECPG. The colon syntax for array slices and type casts are
Greenplum Database extensions, hence the conflict.)

Prompting

The prompts psql issues can be customized to your preference. The three variables PROMPT1, PROMPT2,
and PROMPT3 contain strings and special escape sequences that describe the appearance of the prompt.
Prompt 1 is the normal prompt that is issued when psql requests a new command. Prompt 2 is issued
when more input is expected during command input because the command was not terminated with a
semicolon or a quote was not closed. Prompt 3 is issued when you run an SQL COPY command and you
are expected to type in the row values on the terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is
encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:

%M

The full host name (with domain name) of the database server, or [local] if the connection
is over a UNIX domain socket, or [local:/dir/name], if the UNIX domain socket is not at
the compiled in default location.

%m

The host name of the database server, truncated at the first dot, or [local] if the connection
is over a UNIX domain socket.

Client Utility Reference Utility Guide

221

%>

The port number at which the database server is listening.

%n

The database session user name. (The expansion of this value might change during a
database session as the result of the command SET SESSION AUTHORIZATION.)

%/

The name of the current database.

%~

Like %/, but the output is ~ (tilde) if the database is your default database.

%#

If the session user is a database superuser, then a #, otherwise a >. (The expansion of this
value might change during a database session as the result of the command SET SESSION
AUTHORIZATION.)

%R

In prompt 1 normally =, but ^ if in single-line mode, and ! if the session is disconnected from
the database (which can happen if \connect fails). In prompt 2 the sequence is replaced
by -, *, a single quote, a double quote, or a dollar sign, depending on whether psql expects
more input because the command wasn't terminated yet, because you are inside a /* ...
*/ comment, or because you are inside a quoted or dollar-escaped string. In prompt 3 the
sequence doesn't produce anything.

%x

Transaction status: an empty string when not in a transaction block, or * when in a
transaction block, or ! when in a failed transaction block, or ? when the transaction state is
indeterminate (for example, because there is no connection).

%digits

The character with the indicated octal code is substituted.

%:name:

The value of the psql variable name. See "Variables" in Advanced Features for details.

%`command`

The output of command, similar to ordinary back-tick substitution.

%[... %]

Prompts may contain terminal control characters which, for example, change the color,
background, or style of the prompt text, or change the title of the terminal window. In order
for line editing to work properly, these non-printing control characters must be designated
as invisible by surrounding them with %[and %]. Multiple pairs of these may occur within the
prompt. For example,

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%#'

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible, color-
capable terminals. To insert a percent sign into your prompt, write %%. The default prompts
are '%/%R%# ' for prompts 1 and 2, and '>> ' for prompt 3.

Command-Line Editing

psql supports the NetBSD libedit library for convenient line editing and retrieval. The command history
is automatically saved when psql exits and is reloaded when psql starts up. Tab-completion is also
supported, although the completion logic makes no claim to be an SQL parser. If for some reason you

Client Utility Reference Utility Guide

222

do not like the tab completion, you can turn it off by putting this in a file named .inputrc in your home
directory:

$if psql
set disable-completion on
$endif

Environment
PAGER

If the query results do not fit on the screen, they are piped through this command. Typical
values are more or less. The default is platform-dependent. The use of the pager can be
disabled by using the \pset command.

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters.

PSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e command. The variables are examined in the order listed; the first that
is set is used.

SHELL

Command executed by the \! command.

TMPDIR

Directory for storing temporary files. The default is /tmp.

Files
Before starting up, psql attempts to read and execute commands from the user's ~/.psqlrc file.

The command-line history is stored in the file ~/.psql_history.

Notes
psql only works smoothly with servers of the same version. That does not mean other combinations will
fail outright, but subtle and not-so-subtle problems might come up. Backslash commands are particularly
likely to fail if the server is of a different version.

Notes for Windows users
psql is built as a console application. Since the Windows console windows use a different encoding than
the rest of the system, you must take special care when using 8-bit characters within psql. If psql detects
a problematic console code page, it will warn you at startup. To change the console code page, two things
are necessary:

Set the code page by entering:

cmd.exe /c chcp 1252

1252 is a character encoding of the Latin alphabet, used by Microsoft Windows for English and some other
Western languages. If you are using Cygwin, you can put this command in /etc/profile.

Set the console font to Lucida Console, because the raster font does not work with the ANSI code page.

Client Utility Reference Utility Guide

223

Examples
Start psql in interactive mode:

psql -p 54321 -U sally mydatabase

In psql interactive mode, spread a command over several lines of input. Notice the changing prompt:

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text)
testdb-> ;
CREATE TABLE

Look at the table definition:

testdb=> \d my_table
 Table "my_table"
 Attribute | Type | Modifier
-----------+---------+--------------------
 first | integer | not null default 0
 second | text |

Run psql in non-interactive mode by passing in a file containing SQL commands:

psql -f /home/gpadmin/test/myscript.sql

Client Utility Reference Utility Guide

224

reindexdb
Rebuilds indexes in a database.

Synopsis
reindexdb [connection-option ...] [--table | -t table]
 [--index | -i index] [dbname]

reindexdb [connection-option ...] [--all | -a]

reindexdb [connection-option ...] [--system | -s] [dbname]

reindexdb --help

reindexdb --version

Description
reindexdb is a utility for rebuilding indexes in Greenplum Database, and is a wrapper around the SQL
command REINDEX.

Options
-a | --all

Reindex all databases.

[-d] dbname | [--dbname] dbname

Specifies the name of the database to be reindexed. If this is not specified and -all is not
used, the database name is read from the environment variable PGDATABASE. If that is not
set, the user name specified for the connection is used.

-e | --echo

Echo the commands that reindexdb generates and sends to the server.

-i index | --index index

Recreate index only.

-q | --quiet

Do not display a response.

-s | --system

Reindex system catalogs.

-t table | --table table

Reindex table only.

Connection Options
-h host | --host host

Specifies the host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system user name.

Client Utility Reference Utility Guide

225

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

-W | --password

Force a password prompt.

Notes
reindexdb might need to connect several times to the master server, asking for a password each time. It is
convenient to have a ~/.pgpass file in such cases.

Examples
To reindex the database mydb:

reindexdb mydb

To reindex the table foo and the index bar in a database named abcd:

reindexdb --table foo --index bar abcd

See Also
REINDEX in the Greenplum Database Reference Guide

Client Utility Reference Utility Guide

226

vacuumdb
Garbage-collects and analyzes a database.

Synopsis
vacuumdb [connection-option...] [--full | -f] [-F] [--verbose | -v]
 [--analyze | -z] [--table | -t table [(column [,...])]] [dbname]

vacuumdb [connection-options...] [--all | -a] [--full | -f] [-F]
 [--verbose | -v] [--analyze | -z]

vacuumdb --help

vacuumdb --version

Description
vacuumdb is a utility for cleaning a PostgreSQL database. vacuumdb will also generate internal statistics
used by the PostgreSQL query optimizer.

vacuumdb is a wrapper around the SQL command VACUUM. There is no effective difference between
vacuuming databases via this utility and via other methods for accessing the server.

Options
-a | --all

Vacuums all databases.

[-d] dbname | [--dbname] dbname

The name of the database to vacuum. If this is not specified and -all is not used, the
database name is read from the environment variable PGDATABASE. If that is not set, the user
name specified for the connection is used.

-e | --echo

Echo the commands that reindexdb generates and sends to the server.

-f | --full

Selects a full vacuum, which may reclaim more space, but takes much longer and exclusively
locks the table.

Warning: A VACUUM FULL is not recommended in Greenplum Database.

-F | --freeze

Freeze row transaction information.

-q | --quiet

Do not display a response.

-t table [(column)] | --table table [(column)]

Clean or analyze this table only. Column names may be specified only in conjunction with the
--analyze option. If you specify columns, you probably have to escape the parentheses from
the shell.

-v | --verbose

Print detailed information during processing.

-z | --analyze

Collect statistics for use by the query planner.

Client Utility Reference Utility Guide

227

Connection Options
-h host | --host host

Specifies the host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system user name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

-W | --password

Force a password prompt.

Notes
vacuumdb might need to connect several times to the master server, asking for a password each time. It is
convenient to have a ~/.pgpass file in such cases.

Examples
To clean the database test:

vacuumdb test

To clean and analyze a database named bigdb:

vacuumdb --analyze bigdb

To clean a single table foo in a database named mydb, and analyze a single column bar of the table. Note
the quotes around the table and column names to escape the parentheses from the shell:

vacuumdb --analyze --verbose --table 'foo(bar)' mydb

See Also
VACUUM and ANALYZE in the Greenplum Database Reference Guide

Oracle Compatibility Functions Utility Guide

228

Chapter 4

Oracle Compatibility Functions

This reference describes the Oracle Compatibility SQL functions in Greenplum Database. These functions
target PostgreSQL.

Oracle Compatibility Functions Utility Guide

229

Installing Oracle Compatibility Functions
Before using any Oracle Compatibility Functions, run the installation script $GPHOME/share/postgresql/
contrib/orafunc.sql once for each database. For example, to install the functions in database testdb,
use the following command:

$ psql -d testdb -f $GPHOME/share/postgresql/contrib/orafunc.sql

To uninstall Oracle Compatibility Functions, run the uinstall_orafunc.sql script:

$GPHOME/share/postgresql/contrib/uninstall_orafunc.sql

The following functions are available by default and do not require running the Oracle Compatibility
installer:

• sinh

• tanh

• cosh

• decode

Note: The Oracle Compatibility Functions reside in the oracompat schema. To access them, prefix
the schema name (oracompat) or alter the database search path to include the schema name. For
example:

ALTER DATABASE db_name SET search_path = $user, public, oracompat;

If you alter the database search path, you must restart the database.

Oracle Compatibility Functions Utility Guide

230

Oracle and Greenplum Implementation Differences
There are some differences in the implementation of these compatibility functions in the Greenplum
Database from the Oracle implementation. If you use validation scripts, the output may not be exactly the
same as in Oracle. Some of the differences are as follows:

• Oracle performs a decimal round off, Greenplum Database does not:

• 2.00 becomes 2 in Oracle.

• 2.0.0 remains 2.00 in Greenplum Database.

• The provided Oracle Compatibility functions handle implicit type conversions differently. For example,
using the decode function:

decode(expression, value, return [,value, return]...
 [, default])

Oracle automatically converts expression and each value to the datatype of the first value before
comparing. Oracle automatically converts return to the same datatype as the first result.

The Greenplum implementation restricts return and default to be of the same data type. The
expression and value can be different types if the data type of value can be converted into the data type
of the expression. This is done implicitly. Otherwise, decode fails with an invalid input syntax error.
For example:

SELECT decode('M',true,false);
CASE

 f
(1 row)
SELECT decode(1,'M',true,false);
ERROR: Invalid input syntax for integer:"M"
LINE 1: SELECT decode(1,'M',true,false);

• Numbers in bigint format are displayed in scientific notation in Oracle, but not in Greenplum
Database:

• 9223372036854775 displays as 9.2234E+15 in Oracle.

• 9223372036854775 remains 9223372036854775 in Greenplum Database.

• The default date and timestamp format in Oracle is different than the default format in Greenplum
Database. If the following code is executed:

CREATE TABLE TEST(date1 date, time1 timestamp, time2
 timestamp with timezone);
INSERT INTO TEST VALUES ('2001-11-11','2001-12-13
 01:51:15','2001-12-13 01:51:15 -08:00');
SELECT DECODE(date1, '2001-11-11', '2001-01-01') FROM TEST;

Greenplum Database returns the row, but Oracle does not return any rows.

Note: The correct syntax in Oracle to return the row is:

SELECT DECODE(to_char(date1, 'YYYY-MM-DD'), '2001-11-11',
 '2001-01-01') FROM TEST

Oracle Compatibility Functions Utility Guide

231

Oracle Compatibility Functions Reference
The following are the Oracle Compatibility Functions.

add_months

bitand

concat

cosh

decode

dump

instr

last_day

listagg

listagg (2)

lnnvl

months_between

nanvl

next_day

next_day (2)

nlssort

nvl

nvl2

oracle.substr

reverse

round

sinh

tanh

trunc

Oracle Compatibility Functions Utility Guide

232

add_months
Oracle-compliant function to add a given number of months to a given date.

Synopsis
add_months(date_expression, months_to_add)

Description
This Oracle-compatible function adds months_to_add to a date_expression and returns a DATE.

If the date_expression specifies the last day of the month, or if the resulting month has fewer days than
the date_expression, then the returned value is the last day of the resulting month. Otherwise, the returned
value has the same day of the month as the date_expression.

Parameters
date_expression

The starting date. This can be any expression that can be implicitly converted to DATE.

months_to_add

The number of months to add to the date_expression. This is an integer or any value that can
be implicitly converted to an integer. This parameter can be positive or negative.

Example
SELECT name, phone, nextcalldate FROM clientdb
WHERE nextcalldate >= add_months(CURRENT_DATE,6);

Returns name, phone, and nextcalldate for all records where nextcalldate is at least six months in the
future.

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

233

bitand
Oracle-compliant function that computes a logical AND operation on the bits of two non-negative values.

Synopsis
bitand(expr1, expr2)

Description
This Oracle-compatible function returns an integer representing an AND operation on the bits of two non-
negative values (expr1 and expr2). 1 is returned when the values are the same. 0 is returned when the
values are different. Only significant bits are compared. For example, an AND operation on the integers 5
(binary 101) and 1 (binary 001 or 1) compares only the rightmost bit, and results in a value of 1 (binary 1).

The types of expr1 and expr2 are NUMBER, and the result is of type NUMBER. If either argument is NULL, the
result is NULL.

The arguments must be in the range -(2(n-1)) .. ((2(n-1))-1). If an argument is out of this range, the
result is undefined.

Note:

• The current implementation of BITAND defines n = 128.

• PL/SQL supports an overload of BITAND for which the types of the inputs and of the result are all
BINARY_INTEGER and for which n = 32.

Parameters
expr1

A non-negative integer expression.

expr2

A non-negative integer expression.

Example
SELECT bitand(expr1, expr2)
FROM ClientDB;

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

234

concat
Oracle-compliant function to concatenate two strings together.

Synopsis
concat (string1, string2)

Description
This Oracle-compatible function concatenates two strings (string1 and string2) together.

The string returned is in the same character set as string1. Its datatype depends on the datatypes of the
arguments.

In concatenations of two different datatypes, the datatype returned is the one that results in a lossless
conversion. Therefore, if one of the arguments is a LOB, then the returned value is a LOB. If one of the
arguments is a national datatype, then the returned value is a national datatype. For example:

concat(CLOB, NCLOB) returns NCLOB
concat(NCLOB, NCHAR) returns NCLOB
concat(NCLOB, CHAR) returns NCLOB
concat(NCHAR, CLOB) returns NCLOB

This function is equivalent to the concatenation operator (||).

Parameters
string1/string2

The two strings to concatenate together.

Both string1 and string2 can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB.

Example
SELECT concat(concat(last_name, '''s job category is '),
 job_id)
FROM employees

Returns 'Smith's job category is 4B'

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

235

cosh
Oracle-compliant function to return the hyperbolic cosine of a given number.

Synopsis
cosh(float8)

Description
This Oracle-compatible function returns the hyperbolic cosine of the floating 8 input number (float8).

Note: This function is available by default and can be accessed without running the Oracle
Compatibility installer.

Parameters
float8

The input number.

Example
SELECT cosh(0.2)
FROM ClientDB;

Returns '1.02006675561908'' (hyperbolic cosine of 0.2)

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

236

decode
Oracle-compliant function to transform a data value to a specified return value. This function is a way to
implement a set of CASE statements.

Note: decode is converted into a reserved word in Greenplum Database. If you want to use
the Postgres two-argument decode function that decodes binary strings previously encoded
to ASCII-only representation, you must invoke it by using the full schema-qualified syntax,
pg_catalog.decode(), or by enclosing the function name in quotes "decode" ().

Note: Greenplum's implementation of this function transforms decode into case.

This results in the following type of output:

gptest=# select decode(a, 1, 'A', 2, 'B', 'C') from
decodetest;
 case

 C
 A
 C
 B
 C
(5 rows)

This also means that if you deparse your view with decode, you will see case expression instead.

You should use the case function instead of decode.

Synopsis
decode(expression, value, return [,value, return]...
 [, default])

Description
The Oracle-compatible function decode searches for a value in an expression. If the value is found, the
function returns the specified value.

Note: This function is available by default and can be accessed without running the Oracle
Compatibility installer.

Parameters
expression

The expression to search.

value

The value to find in the expression.

return

What to return if expression matches value.

default

What to return if expression does not match any of the values.

Only one expression is passed to the function. Multiple value/return pairs can be passed.

The default parameter is optional. If default is not specified and if expression does not match any of
the passed value parameters, decode returns null. The Greenplum implementation restricts return and
default to be of the same data type. The expression and value can be different types if the data type of

Oracle Compatibility Functions Utility Guide

237

value can be converted into the data type of the expression. This is done implicitly. Otherwise, decode
fails with an invalid input syntax error.

Examples
In the following code, decode searches for a value for company_id and returns a specified value for that
company. If company_id not one of the listed values, the default value Other is returned.

SELECT decode(company_id, 1, 'EMC',
 2, 'Greenplum',
 'Other')
FROM suppliers;

The following code using CASE statements to produce the same result as the example using decode.

SELECT CASE company_id
WHEN IS NOT DISTINCT FROM 1 THEN 'EMC'
WHEN IS NOT DISTINCT FROM 2 THEN 'Greenplum'
ELSE 'Other'
END
FROM suppliers;

Notes
To assign a range of values to a single return value, either pass an expression for each value in the range,
or pass an expression that evaluates identically for all values in the range. For example, if a fiscal year
begins on August 1, the quarters are shown in the following table.

Table 20: Months and Quarters for Fiscal Year Beginning on August 1

Range (Alpha) Range (Numeric) Quarter

August — October 8 — 10 Q1

November — January 11 — 1 Q2

February — April 2 — 4 Q3

May — July 5 — 7 Q4

The table contains a numeric field curr_month that holds the numeric value of a month, 1 – 12. There are
two ways to use decode to get the quarter:

• Method 1 - Include 12 values in the decode function:

SELECT decode(curr_month, 1, 'Q2',
 2, 'Q3',
 3, 'Q3',
 4, 'Q3',
 5, 'Q4',
 6, 'Q4',
 7, 'Q4',
 8, 'Q1',
 9, 'Q1',
 10, 'Q1',
 11, 'Q2',
 12, 'Q2')
FROM suppliers;

• Method 2 - Use an expression that defines a unique value to decode:

SELECT decode((1+MOD(curr_month+4,12)/3)::int, 1, 'Q1',
 2, 'Q2',
 3, 'Q3',

Oracle Compatibility Functions Utility Guide

238

 4, 'Q4',
FROM suppliers;

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

See Also
PostgreSQL decode (not compatible with Oracle)

https://www.postgresql.org/docs/8.2/static/functions-binarystring.html

Oracle Compatibility Functions Utility Guide

239

dump
Oracle-compliant function that returns a text value that includes the datatype code,the length in bytes, and
the internal representation of the expression.

Synopsis
dump(expression [,integer])

Description
This Oracle-compatible function returns a text value that includes the datatype code, the length in bytes,
and the internal representation of the expression.

Parameters
expression

Any expression

integer

The number of characters to return

Example
dump('Tech') returns 'Typ=96 Len=4: 84,101,99,104'

dump ('tech') returns 'Typ-96 Len=4: 84,101,99,104'

dump('Tech', 10) returns 'Typ=96 Len=4: 84,101,99,104'

dump('Tech', 16) returns 'Typ=96 Len=4: 54,65,63,68'

dump('Tech', 1016) returns 'Typ=96 Len=4 CharacterSet=US7ASCII: 54,65,63,68'

dump('Tech', 1017) returns 'Typ=96 Len=4 CharacterSet=US7ASCII: T,e,c,h'

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

240

instr
Oracle-compliant function to return the location of a substring in a string.

Synopsis
instr(string, substring, [position[,occurrence]])

Description
This Oracle-compatible function searches for a substring in a string. If found, it returns an integer indicating
the position of the substring in the string, if not found, the function returns 0.

Optionally you can specify that the search starts at a given position in the string, and only return the nth
occurrence of the substring in the string.

instr calculates strings using characters as defined by the input character set.

The value returned is of NUMBER datatype.

Parameters
string

The string to search.

substring

The substring to search for in string.

Both string and substring can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB.

position

The position is a nonzero integer in string where the search will start. If not specified, this
defaults to 1. If this value is negative, the function counts backwards from the end of string
then searches towards to beginning from the resulting position.

occurrence

Occurrence is an integer indicating which occurrence of the substring should be searched for.
The value of occurrence must be positive.

Both position and occurrence must be of datatype NUMBER, or any datatype that can be
implicitly converted to NUMBER, and must resolve to an integer. The default values of both
position and occurrence are 1, meaning that the search begins at the first character of string
for the first occurrence of substring. The return value is relative to the beginning of string,
regardless of the value of position, and is expressed in characters.

Examples
SELECT instr('Greenplum', 'e')
FROM ClientDB;

Returns 3; the first occurrence of 'e'

SELECT instr('Greenplum', 'e',1,2)
FROM ClientDB;

Returns 4; the second occurrence of 'e'

Oracle Compatibility Functions Utility Guide

241

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

242

last_day
Oracle-compliant function to return the last day in a given month.

Synopsis
last_day(date_expression)

Description
This Oracle-compatible function returns the last day of the month specified by a date_expression.

The return type is always DATE, regardless of the datatype of date_expression.

Parameters
date_expression

The date value used to calculate the last day of the month. This can be any expression that
can be implicitly converted to DATE.

Example
SELECT name, hiredate, last_day(hiredate) "Option Date"
FROM employees;

Returns the name, hiredate, and last_day of the month of hiredate labeled " Option Date."

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

243

listagg
Oracle-compliant function that aggregates text values into a string.

Note: This function is an overloaded function. There are two Oracle-compliant listagg functions,
one that takes one argument, the text to be aggregated (see below), and one that takes two
arguments, the text to be aggregated and a delimiter (see next page).

Synopsis
listagg(text)

Description
This Oracle-compatible function aggregates text values into a string.

Parameters
text

The text value to be aggregated into a string.

Example
SELECT listagg(t) FROM (VALUES('abc'), ('def')) as l(t)

Returns: abcdef

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

244

listagg (2)
Oracle-compliant function that aggregates text values into a string, separating each by the separator
specified in a second argument.

Note: This function is an overloaded function. There are two Oracle-compliant listagg functions,
one that takes one argument, the text to be aggregated (see previous page), and one that takes two
arguments, the text to be aggregated and a delimiter (see below).

Synopsis
listagg(text, separator)

Description
This Oracle-compatible function aggregates text values into a string, separating each by the separator
specified in a second argument (separator).

Parameters
text

The text value to be aggregated into a string.

separator

The separator by which to delimit the text values.

Example
SELECT oracompat.listagg(t, '.') FROM (VALUES('abc'),
('def')) as l(t)

Returns: abc.def

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

245

lnnvl
Oracle-compliant function that returns true if the argument is false or NULL, or false.

Synopsis
lnnvl(condition)

Description
This Oracle-compatible function takes as an argument a condition and returns true if the condition is false
or NULL and false if the condition is true.

Parameters
condition

Any condition that evaluates to true, false, or NULL.

Example
SELECT lnnvl(true)

Returns: false

SELECT lnnvl(NULL)

Returns: true

SELECT lnnvl(false)

Returns: true

SELECT (3=5)

Returns: true

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

246

months_between
Oracle-compliant function to evaluate the number of months between two given dates.

Synopsis
months_between(date_expression1, date_expression2)

Description
This Oracle-compatible function returns the number of months between date_expression1 and
date_expression2.

If date_expression1 is later than date_expression2, then the result is positive.

If date_expression1 is earlier than date_expression2, then the result is negative.

If date_expression1 and date_expression2 are either the same days of the month or both last days of
months, then the result is always an integer. Otherwise the function calculates the fractional portion of the
month based on a 31-day month.

Parameters
date_expression1, date_expression2

The date values used to calculate the number of months. This can be any expression that
can be implicitly converted to DATE.

Examples
SELECT months_between
 (to_date ('2003/07/01', 'yyyy/mm/dd'),
 to_date ('2003/03/14', 'yyyy/mm/dd'));

Returns the number of months between July 1, 2003 and March 14, 2014.

SELECT * FROM employees
 where months_between(hire_date, leave_date) <12;

Returns the number of months between hire_date and leave_date.

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

247

nanvl
Oracle-compliant function to substitute a value for a floating point number when a non-number value is
encountered.

Synopsis
nanvl(float1, float2)

Description
This Oracle-compatible function evaluates a floating point number (float1) such as BINARY_FLOAT or
BINARY_DOUBLE. If it is a non-number ('not a number', NaN), the function returns float2. This function is
most commonly used to convert non-number values into either NULL or 0.

Parameters
float1

The BINARY_FLOAT or BINARY_NUMBER to evaluate.

float2

The value to return if float1 is not a number.

float1 and float2 can be any numeric datatype or any nonnumeric datatype that can be
implicitly converted to a numeric datatype. The function determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that datatype,
and returns that datatype.

Example
SELECT nanvl(binary1, 0)
FROM MyDB;

Returns 0 if the binary1 field contained a non-number value. Otherwise, it would return the binary1 value.

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

248

next_day
Oracle-compliant function to return the date of the next specified weekday after a date.

This section describes using this function with a string argument; see the following page for details about
using this function with an integer argument.

Note: This function is an overloaded function. There are two Oracle-compliant next_day functions,
one that takes a date and a day of the week as its arguments (see below), and one that takes a
date and an integer as its arguments (see next page).

Synopsis
next_day(date_expression, day_of_the_week)

Description
This Oracle-compatible function returns the first day_of_the_week (Tuesday, Wednesday, etc.) to occur
after a date_expression.

The weekday must be specified in English.

The case of the weekday is irrelevant.

The return type is always DATE, regardless of the datatype of date_expression.

Parameters
date_expression

The starting date. This can be any expression that can be implicitly converted to DATE.

day_of_the_week

A string containing the name of a day, in English; for example 'Tuesday'. day_of_the_week is
case-insensitive.

Example
SELECT name, next_day(hiredate,"MONDAY") "Second Week Start"
FROM employees;

Returns the name and the date of the next Monday after hiredate labeled "Second Week Start".

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

249

next_day (2)
Oracle-compliant function to add a given number of days to a date and returns the date of the following
day.

Note: This function is an overloaded function. There are two Oracle next_day functions, one that
takes a date and a day of the week as its arguments (see previous page), and one that takes a date
and an integer as its arguments (see below).

Synopsis
next_day(date_expression, days_to_add)

Description
This Oracle-compatible function adds the number of days_to_add to a date_expression and returns the
date of the day after the result.

The return type is always DATE, regardless of the datatype of date_expression.

Parameters
date_expression

The starting date. This can be any expression that can be implicitly converted to DATE.

days_to_add

The number of days to be add to the date_expression. This is an integer or any value that
can be implicitly converted to an integer. This parameter can be positive or negative.

Example
SELECT name, next_day(hiredate,90) "Benefits Eligibility
Date"
FROM EMPLOYEES;

Returns the name and the date that is 90 days after hiredate labeled "Benefits Eligibility Date".

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

250

nlssort
Oracle-compliant function that sorts data according to a specific collation.

Synopsis
nlssort (variable, collation)

Description
This Oracle-compatible function sorts data according to a specific collation.

Parameters
variable

The data to sort.

collation

The collation type by which to sort.

Example
CREATE TABLE test (name text);
INSERT INTO test VALUES('Anne'), ('anne'), ('Bob'), ('bob');
SELECT * FROM test ORDER BY nlssort(name, 'en_US.UTF-8');
 anne
 Anne
 bob
 Bob

SELECT * FROM test ORDER BY nlssort(name, 'C');
 Anne
 Bob
 anne
 bob

In the first example, the UTF-8 collation rules are specified. This groups characters together regardless of
case.

In the second example, ASCII (C) collation is specified. This sorts according to ASCII order. The result is
that upper case characters are sorted ahead of lower case ones.

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

251

nvl
Oracle-compliant function to substitute a specified value when an expression evaluates to null.

Note: This function is analogous to the PostgreSQL coalesce function.

Synopsis
nvl(expression_to_evaluate, null_replacement_value)

Description
This Oracle-compatible function evaluates expression_to_evaluate. If it is null, the function returns
null_replacement_value; otherwise, it returns expression_to_evaluate.

Parameters
expression_to_evaluate

The expression to evaluate for a null value.

null_replacement_value

The value to return if expression_to_evaluate is null.

Both expression_to_evaluate and null_replacement_value must be the same data type.

Examples
SELECT nvl(contact_name,'None')
FROM clients;
SELECT nvl(amount_past_due,0)
FROM txns;
SELECT nvl(nickname, firstname)
FROM contacts;

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

252

nvl2
Oracle-compliant function that returns alternate values for both null and non-null values.

Synopsis
nvl2(expression_to_evaluate, non_null_replacement_value,
 null_replacement_value)

Description
This Oracle-compatible function evaluates expression_to_evaluate. If it is not null, the function returns
non_null_replacement_value; otherwise, it returns null_replacement_value.

Parameters
expression_to_evaluate

The expression to evaluate for a null value.

non_null_replacement_value

The value to return if expression_to_evaluate is not null.

null_replacement_value

The value to return if expression_to_evaluate is null.

Example
select nvl2(unit_number,'Multi Unit','Single Unit')
from clients;

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

See Also
decode

Oracle Compatibility Functions Utility Guide

253

oracle.substr
This Oracle-compliant function extracts a portion of a string.

Synopsis
oracle.substr(string, [start [,char_count]])

Description
This Oracle-compatible function extract a portion of a string.

If start is 0, it is evaluated as 1.

If start is negative, the starting position is negative, the starting position is start characters moving
backwards from the end of string.

If char_count is not passed to the function, all characters from start to the end of string are returned.

If char_count is less than 1, null is returned.

If start or char_count is a number, but not an integer, the values are resolved to integers.

Parameters
string

The string from which to extract.

start

An integer specifying the starting position in the string.

char_count

An integer specifying the number of characters to extract.

Example
oracle.substr(name,1,15)

Returns the first 15 characters of name.

oracle.substr("Greenplum",-4,4)

Returns "plum".

oracle.substr(name,2)

Returns all characters of name, beginning with the second character.

Compatibility
PostgreSQL substr (not compatible with Oracle)

https://www.postgresql.org/docs/8.2/static/functions-string.html

Oracle Compatibility Functions Utility Guide

254

reverse
Oracle-compliant function to return the input string in reverse order.

Synopsis
reverse (string)

Description
This Oracle-compatible function returns the input string (string) in reverse order.

Parameters
string

The input string.

Example
SELECT reverse('gnirts')
FROM ClientDB;

Returns 'string''

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

255

round
Oracle-compliant function to round a date to a specific unit of measure (day, week, etc.).

Note: This function is an overloaded function. It shares the same name with the Postgres round
mathematical function that rounds numeric input to the nearest integer or optionally to the nearest x
number of decimal places.

Synopsis
round (date_time_expression, [unit_of_measure])

Description
This Oracle-compatible function rounds a date_time_expression to the nearest unit_of_measure (day,
week, etc.). If a unit_of_measure is not specified, the date_time_expression is rounded to the nearest day.
It operates according to the rules of the Gregorian calendar.

If the date_time_expression datatype is TIMESTAMP, the value returned is always of datatype TIMESTAMP.

If the date_time_expression datatype is DATE, the value returned is always of datatype DATE.

Parameters
date_time_expression

The date to round. This can be any expression that can be implicitly converted to DATE or
TIMESTAMP.

unit_of_measure

The unit of measure to apply for rounding. If not specified, then the date_time_expression is
rounded to the nearest day. Valid parameters are:

Table 21: Valid Parameters

Unit Valid parameters Rounding Rule

Year SYYYY, YYYY, YEAR, SYEAR,
YYY, YY, Y

Rounds up on July 1st

ISO Year IYYY, IY, I

Quarter Q Rounds up on the 16th day of the
second month of the quarter

Month MONTH, MON, MM, RM Rounds up on the 16th day of the
month

Week WW Same day of the week as the first
day of the year

IW IW Same day of the week as the first
day of the ISO year

W W Same day of the week as the first
day of the month

Day DDD, DD, J Rounds to the nearest day

Oracle Compatibility Functions Utility Guide

256

Unit Valid parameters Rounding Rule

Start day of the week DAY, DY, D Rounds to the nearest start
(sunday) day of the week

Hour HH, HH12, HH24 Rounds to the next hour

Minute MI Rounds to the next minute

Example
SELECT round(TO_DATE('27-OCT-00','DD-MON-YY'), 'YEAR')
FROM ClientDB;

Returns '01-JAN-01' (27 Oct 00 rounded to the first day of the following year (YEAR))

SELECT round('startdate','Q')
FROM ClientDB;

Returns '01-JUL-92' (the startdate rounded to the first day of the quarter (Q))

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

See Also
PostgreSQL round (not compatible with Oracle)

https://www.postgresql.org/docs/8.2/static/functions-math.html

Oracle Compatibility Functions Utility Guide

257

sinh
Oracle-compliant function to return the hyperbolic sine of a given number.

Synopsis
sinh(float8)

Description
This Oracle-compatible function returns the hyperbolic sine of the floating 8 input number (float8).

Note: This function is available by default and can be accessed without running the Oracle
Compatibility installer.

Parameters
float8

The input number.

Example
SELECT sinh(3)
FROM ClientDB;

Returns '10.0178749274099''(hyperbolic sine of 3)

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

258

tanh
Oracle-compliant function to return the hyperbolic tangent of a given number.

Synopsis
tanh(float8)

Description
This Oracle-compatible function returns the hyperbolic tangent of the floating 8 input number (float8).

Note:

This function is available by default and can be accessed without running the Oracle Compatibility
installer.

Parameters
float8

The input number.

Example
SELECT tanh(3)
FROM ClientDB;

Returns '0.99505475368673'' (hyperbolic tangent of 3)

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

Oracle Compatibility Functions Utility Guide

259

trunc
Oracle-compliant function to truncate a date to a specific unit of measure (day, week, hour, etc.).

Note:

This function is an overloaded function. It shares the same name with the Postgres trunc and the
Oracle trunc mathematical functions. Both of these truncate numeric input to the nearest integer or
optionally to the nearest x number of decimal places.

Synopsis
trunc(date_time_expression, [unit_of_measure])

Description
This Oracle-compatible function truncates a date_time_expression to the nearest unit_of_measure (day,
week, etc.). If a unit_of_measure is not specified, the date_time_expression is truncated to the nearest
day. It operates according to the rules of the Gregorian calendar.

If the date_time_expression datatype is TIMESTAMP, the value returned is always of datatype TIMESTAMP,
truncated to the hour/min level.

If the date_time_expression datatype is DATE, the value returned is always of datatype DATE.

Parameters
date_time_expression

The date to truncate. This can be any expression that can be implicitly converted to DATE or
TIMESTAMP.

unit_of_measure

The unit of measure to apply for truncating. If not specified, then date__time_expression is
truncated to the nearest day. Valid formats are:

Table 22: Valid Format Parameters

Unit Valid parameters

Year SYYYY, YYYY, YEAR, SYEAR, YYY, YY, Y

ISO Year IYYY, IY, I

Quarter Q

Month MONTH, MON, MM, RM

Week WW

IW IW

W W

Day DDD, DD, J

Start day of the week DAY, DY, D

Hour HH, HH12, HH24

Minute MI

Oracle Compatibility Functions Utility Guide

260

Examples
SELECT TRUNC(TO_DATE('27-OCT-92','DD-MON-YY'), 'YEAR')
FROM ClientDB;

Returns '01-JAN-92' (27 Oct 92 truncated to the first day of the year (YEAR))

SELECT TRUNC(startdate,'Q')
FROM ClientDB;

Returns '1992-07-01' (the startdate truncated to the first day of the quarter (Q), depending on the
date_style setting)

Compatibility
This command is compatible with Oracle syntax and is provided for convenience.

See Also
PostgreSQL trunc (not compatible with Oracle)

https://www.postgresql.org/docs/8.2/static/functions-math.html

	Copyright
	Contents
	Preface
	About This Guide
	About the Greenplum Database Documentation Set
	Document Conventions
	Command Syntax Conventions

	Getting Support
	Product information and Technical Support

	Management Utility Reference
	Backend Server Programs
	analyzedb
	gpactivatestandby
	gpaddmirrors
	gpbitmapreindex
	gpcheck
	gpcheckcat
	gpcheckperf
	gpconfig
	gpcrondump
	gpdbrestore
	gpdeletesystem
	gpexpand
	gpfdist
	gpfilespace
	gpinitstandby
	gpinitsystem
	gpload
	gplogfilter
	gpmapreduce
	gpmfr
	gpmigrator
	gpmigrator_mirror
	gpperfmon_install
	gppkg
	gprecoverseg
	gpreload
	gpscp
	gpseginstall
	gpssh
	gpssh-exkeys
	gpstart
	gpstate
	gpstop
	gpsys1
	gptransfer
	pgbouncer
	PgBouncer Configuration File
	[databases] Section
	[pgbouncer] Section
	[users] Section

	Example Configuration Files
	PgBouncer Authentication File Format
	PgBouncer Administration Console Commands
	Administration Console Command Syntax
	Administration Commands
	SHOW Command
	ACTIVE_SOCKETS
	CLIENTS
	CONFIG
	DATABASES
	DNS_ZONES
	FDS
	LISTS
	MEM
	POOLS
	SERVERS
	STATS
	USERS
	VERSION

	Client Utility Reference
	Client Utility Summary
	clusterdb
	createdb
	createlang
	createuser
	dropdb
	droplang
	dropuser
	pg_config
	pg_dump
	pg_dumpall
	pg_restore
	psql
	reindexdb
	vacuumdb

	Oracle Compatibility Functions
	Installing Oracle Compatibility Functions
	Oracle and Greenplum Implementation Differences
	Oracle Compatibility Functions Reference
	add_months
	bitand
	concat
	cosh
	decode
	dump
	instr
	last_day
	listagg
	listagg (2)
	lnnvl
	months_between
	nanvl
	next_day
	next_day (2)
	nlssort
	nvl
	nvl2
	oracle.substr
	reverse
	round
	sinh
	tanh
	trunc

