
PRODUCT DOCUMENTATION

Pivotal™ Greenplum
Database®

Version 4.3

Client Tools for UNIX
Rev: A09

© 2017 Pivotal Software, Inc.

Copyright Client Tools for UNIX

2

Notice

Copyright

Privacy Policy | Terms of Use

Copyright © 2017 Pivotal Software, Inc. All rights reserved.

Pivotal Software, Inc. believes the information in this publication is accurate as of its publication date. The
information is subject to change without notice. THE INFORMATION IN THIS PUBLICATION IS PROVIDED
"AS IS." PIVOTAL SOFTWARE, INC. ("Pivotal") MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any Pivotal software described in this publication requires an applicable
software license.

All trademarks used herein are the property of Pivotal or their respective owners.

Revised February 2017 (4.3.12.0)

http://pivotal.io/privacy-policy
http://pivotal.io/terms-of-use

Contents Client Tools for UNIX

3

Contents

Chapter 1: Installing the Greenplum Client Tools....................................4
Running the Client Tools Installer...5

About Your Installation... 5
Configuring the Command-Line Tools.. 6

Additional Connection Environment Variables... 6
Enabling Greenplum Database for Remote Client Connections...7
Configuring a Client System for Kerberos Authentication...8

Requirements..8
Setting Up a Client System with Kerberos Authentication... 8
Accessing Greenplum Database with psql...9

Next Steps... 10

Chapter 2: Client Tools Reference.. 11
gpmapreduce... 12
psql.. 14

Chapter 3: SQL Syntax Summary..32

Installing the Greenplum Client Tools Client Tools for UNIX

4

Chapter 1

Installing the Greenplum Client Tools

This section contains information for installing the client programs on your client machine and for enabling
Greenplum Database to accept remote client connections:

• Running the Client Tools Installer

• Configuring the Command-Line Tools

• Enabling Greenplum Database for Remote Client Connections

• Configuring a Client System for Kerberos Authentication

• Next Steps

See the Greenplum Database Release Notes for the list of currently supported platforms for the Client
Tools.

Installing the Greenplum Client Tools Client Tools for UNIX

5

Running the Client Tools Installer
The Greenplum Database client tools installer installs the following client tools:

• PostgreSQL Interactive Terminal (psql)

• Greenplum MapReduce Client Program (gpmapreduce)

To install the Greenplum Database client tools
1. Download the appropriate greenplum-clients-4.3.x.x-PLATFORM.bin installer package for your

platform from Pivotal Network.
2. Unzip the installer:

unzip greenplum-clients-4.3.x.x-PLATFORM.bin.zip

3. Run the installer:

/bin/bash greenplum-clients-4.3.x.x-PLATFORM.bin

4. The installer will prompt you to accept the license agreement and to provide an installation path. For
the installation path, be sure to enter an absolute path if you choose not to accept the default location
(for example, /mydir/gp-client-tools). The client tools are installed into greenplum-db-4.3.x.x by
default.

About Your Installation
Your Greenplum Database client tools installation contains the following files and directories:

• bin — client command-line tools (psql and gpmapreduce)

• greenplum_clients_path.sh — environment variables

• include — libpq C header files

• lib — client tools library files

https://network.pivotal.io

Installing the Greenplum Client Tools Client Tools for UNIX

6

Configuring the Command-Line Tools
As a convenience, a greenplum_clients_path.sh file is provided in your client tools installation directory
following installation. It has the following environment variable settings:

GPHOME_CLIENTS — The installation directory of the Greenplum Database client tools.

PATH — The paths to the command-line utilities.

LD_LIBRARY_PATH — The path to the library files.

You can source this file in your user's startup shell profile (such as .bashrc or .bash_profile).

For example, you could add a line similar to the following to your chosen profile files (making sure the right
install path is used):

source greenplum-db-4.3.x.x/greenplum_clients_path.sh

After editing the chosen profile file, source it as the correct user to make the changes active. For example:

source ~/.bashrc

Additional Connection Environment Variables
The PostgreSQL command-line tools require several connection parameters in order to be able to connect
to a Greenplum Database database. In order to save some typing on the command-line, you can create
the following environment variables in your preferred profile file (such as .bashrc).

• PGDATABASE — The name of the default Greenplum database to connect to.

• PGHOST — The Greenplum master host name or IP address.

• PGPORT — The port number that the Greenplum master instance (postmaster process) is running on.

• PGUSER — The default database role name to use for login.

Installing the Greenplum Client Tools Client Tools for UNIX

7

Enabling Greenplum Database for Remote Client
Connections

In order for Greenplum Database to be able to accept remote client connections, you must configure your
Greenplum Database master so that connections are allowed from the client hosts and database users that
will be connecting to Greenplum Database.

To enable remote client connections
1. Make sure that the pg_hba.conf file of the Greenplum Database master is correctly configured to allow

connections from the users to the database(s) using the authentication method you want. For details,
see "Editing the pg_hba.conf File" in the Greenplum Database Administration Guide, and also see the
Greenplum Database Security Configuration Guide.

Make sure the authentication method you choose is supported by the client tool you are using.
2. If you edited pg_hba.conf file, the change requires a server reload (using the gpstop -u command) to

take effect.
3. Make sure that the databases and roles you are using to connect exist in the system and that the roles

have the correct privileges to the database objects.

Installing the Greenplum Client Tools Client Tools for UNIX

8

Configuring a Client System for Kerberos Authentication
If you use Kerberos authentication to connect to a Greenplum Database with the psql utility, your client
system must be configured to use Kerberos authentication. If you are not using Kerberos authentication to
connect to a Greenplum Database, Kerberos is not needed on your client system.

• Requirements

• Setting Up a Client System with Kerberos Authentication

• Accessing Greenplum Database with psql

For information about enabling Kerberos authentication with Greenplum Database, see the "Kerberos
Authentication" chapter in the Greenplum Database Administrator Guide.

Requirements
The following are requirements to connect to a Greenplum Database that is enabled with Kerberos
authentication from a client system with Greenplum Database client software.

• Prerequisites

• Required Software on the Client Machine

Prerequisites
• Kerberos must be installed and configured on the Greenplum Database master host. See Enabling

Greenplum Database for Remote Client Connections.

• The client systems require the Kerberos configuration file krb5.conf from the Greenplum Database
master.

• The client systems require a Kerberos keytab file that contains the authentication credentials for the
Greenplum Database user that is used to log into the database.

• The client machines must be able to connect to Greenplum Database master host.

If necessary, add the Greenplum Database master host name and IP address to the system hosts file.

On Linux systems, the hosts file is located in /etc.

Required Software on the Client Machine
The Kerberos kinit utility is required on the client machine. The kinit utility is available when you install
the Kerberos packages:

• krb5-libs

• krb5-workstation

Note: When you install the Kerberos packages, you can use other Kerberos utilities such as klist
to display Kerberos ticket information.

Setting Up a Client System with Kerberos Authentication
To connect to Greenplum Database with Kerberos authentication requires a Kerberos ticket. On client
systems, tickets are generated from Kerberos keytab files with the kinit utility and are stored in a cache
file.

1. Install a copy of the Kerberos configuration file krb5.conf from the Greenplum Database master. The
file is used by the Greenplum Database client software and the Kerberos utilities.

Install krb5.conf in the /etc directory.

Installing the Greenplum Client Tools Client Tools for UNIX

9

If needed, add the parameter default_ccache_name to the [libdefaults] section of the krb5.ini file
and specify the location of the Kerberos ticket cache file on the client system.

2. Obtain a Kerberos keytab file that contains the authentication credentials for the Greenplum Database
user.

3. Run kinit specifying the keytab file to create a ticket on the client machine. For this example, the
keytab file gpdb-kerberos.keytab is in the current directory. The ticket cache file is in the gpadmin
user home directory. For example:

$ kinit -k -t gpdb-kerberos.keytab
 -c /home/gpadmin/cache.txt
 gpadmin/kerberos-gpdb@KRB.EXAMPLE.COM

Accessing Greenplum Database with psql
From a remote system, you can access a Greenplum Database that has Kerberos authentication enabled.

To connect to Greenplum Database with psql
1. As the gpadmin user, open a command window.
2. Start psql from the command window and specify a connection to the Greenplum Database specifying

the user that is configured with Kerberos authentication.

The following example logs into the Greenplum Database on the machine kerberos-gpdb as the
gpadmin user with the Kerberos credentials gpadmin/kerberos-gpdb:

$ psql -U "gpadmin/kerberos-gpdb" -h kerberos-gpdb template1

Installing the Greenplum Client Tools Client Tools for UNIX

10

Next Steps
Refer to the client tool reference documentation for further instructions:

• Greenplum Command Line Tools — See Client Tools Reference.

• Greenplum Database SQL Syntax — See SQL Syntax Summary.

11

Chapter 2

Client Tools Reference

This chapter describes the client tools provided with this release. They all require certain connection
information such as the Greenplum Database master host name, port, database name, and role name.
These can be configured using environment variables. See Configuring the Command-Line Tools.

The following tools are provided:

• gpmapreduce (submits Greenplum MapReduce specifications for execution)

• psql (PostgreSQL interactive terminal)

Client Tools Reference Client Tools for UNIX

12

gpmapreduce
Runs Greenplum MapReduce jobs as defined in a YAML specification document.

Synopsis
gpmapreduce -f yaml_file [dbname [username]]
 [-k name=value | --key name=value]
 [-h hostname | --host hostname] [-p port| --port port]
 [-U username | --username username] [-W] [-v]

gpmapreduce -x | --explain

gpmapreduce -X | --explain-analyze

gpmapreduce -V | --version

gpmapreduce -h | --help

Prerequisites
The following are required prior to running this program:

• You must have your MapReduce job defined in a YAML file. For information about the Greenplum
MapReduce specification, see the Greenplum Database Reference Guide.

• You must be a Greenplum Database superuser to run MapReduce jobs written in untrusted Perl or
Python.

• You must be a Greenplum Database superuser to run MapReduce jobs with EXEC and FILE inputs.

• You must be a Greenplum Database superuser to run MapReduce jobs with GPFDIST input unless the
server configuration parameter gp_external_grant_privileges is set to on. See the Greenplum
Database Reference Guide for more information.

Description
MapReduce is a programming model developed by Google for processing and generating large data sets
on an array of commodity servers. Greenplum MapReduce allows programmers who are familiar with the
MapReduce paradigm to write map and reduce functions and submit them to the Greenplum Database
parallel engine for processing.

In order for Greenplum to be able to process MapReduce functions, the functions need to be defined
in a YAML document, which is then passed to the Greenplum MapReduce program, gpmapreduce, for
execution by the Greenplum Database parallel engine. The Greenplum system takes care of the details of
distributing the input data, executing the program across a set of machines, handling machine failures, and
managing the required inter-machine communication.

Options
-f yaml_file

Required. The YAML file that contains the Greenplum MapReduce job definitions. See the
Greenplum Database Reference Guide.

-? | --help

Show help, then exit.

-V | --version

Show version information, then exit.

-v | --verbose

http://en.wikipedia.org/wiki/MapReduce

Client Tools Reference Client Tools for UNIX

13

Show verbose output.

-x | --explain

Do not run MapReduce jobs, but produce explain plans.

-X | --explain-analyze

Run MapReduce jobs and produce explain-analyze plans.

-k | --keyname=value

Sets a YAML variable. A value is required. Defaults to "key" if no variable name is specified.

Connection Options
-h host | --host host

Specifies the host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system user name.

-W | --password

Force a password prompt.

Examples
Run a MapReduce job as defined in my_yaml.txt and connect to the database mydatabase:

gpmapreduce -f my_yaml.txt mydatabase

See Also
Greenplum MapReduce specification in the Greenplum Database Reference Guide

Client Tools Reference Client Tools for UNIX

14

psql
Interactive command-line interface for Greenplum Database

Synopsis
psql [option ...] [dbname [username]]

Description
psql is a terminal-based front-end to Greenplum Database. It enables you to type in queries interactively,
issue them to Greenplum Database, and see the query results. Alternatively, input can be from a file. In
addition, it provides a number of meta-commands and various shell-like features to facilitate writing scripts
and automating a wide variety of tasks.

Options
-a | --echo-all

Print all input lines to standard output as they are read. This is more useful for script
processing rather than interactive mode.

-A | --no-align

Switches to unaligned output mode. (The default output mode is aligned.)

-c 'command' | --command 'command'

Specifies that psql is to execute the specified command string, and then exit. This is useful
in shell scripts. command must be either a command string that is completely parseable
by the server, or a single backslash command. Thus you cannot mix SQL and psql meta-
commands with this option. To achieve that, you could pipe the string into psql, like this:

echo '\x \\ SELECT * FROM foo;' | psql

(\\ is the separator meta-command.)

If the command string contains multiple SQL commands, they are processed in a single
transaction, unless there are explicit BEGIN/COMMIT commands included in the string to divide
it into multiple transactions. This is different from the behavior when the same string is fed to
psql's standard input.

-d dbname | --dbname dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as
the first non-option argument on the command line.

If this parameter contains an equals sign, it is treated as a conninfo string; for example you
can pass 'dbname=postgres user=username password=mypass' as dbname.

-e | --echo-queries

Copy all SQL commands sent to the server to standard output as well.

-E | --echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can use this
to study psql's internal operations.

-f filename | --file filename

Use a file as the source of commands instead of reading commands interactively. After the
file is processed, psql terminates. If filename is - (hyphen), then standard input is read.
Using this option is subtly different from writing psql <filename. In general, both will do

Client Tools Reference Client Tools for UNIX

15

what you expect, but using -f enables some nice features such as error messages with line
numbers.

-F separator | --field-separator separator

Use the specified separator as the field separator for unaligned output.

-H | --html

Turn on HTML tabular output.

-l | --list

List all available databases, then exit. Other non-connection options are ignored.

-L filename | --log-file filename

Write all query output into the specified log file, in addition to the normal output destination.

-o filename | --output filename

Put all query output into the specified file.

-P assignment | --pset assignment

Allows you to specify printing options in the style of \pset on the command line. Note that
here you have to separate name and value with an equal sign instead of a space. Thus to set
the output format to LaTeX, you could write -P format=latex.

-q | --quiet

Specifies that psql should do its work quietly. By default, it prints welcome messages and
various informational output. If this option is used, none of this happens. This is useful with
the -c option.

-R separator | --record-separator separator

Use separator as the record separator for unaligned output.

-s | --single-step

Run in single-step mode. That means the user is prompted before each command is sent to
the server, with the option to cancel execution as well. Use this to debug scripts.

-S | --single-line

Runs in single-line mode where a new line terminates an SQL command, as a semicolon
does.

-t | --tuples-only

Turn off printing of column names and result row count footers, etc. This command is
equivalent to \pset tuples_only and is provided for convenience.

-T table_options | --table-attr table_options

Allows you to specify options to be placed within the HTML table tag. See \pset for details.

-v assignment | --set assignment | --variable assignment

Perform a variable assignment, like the \set internal command. Note that you must separate
name and value, if any, by an equal sign on the command line. To unset a variable, leave
off the equal sign. To just set a variable without a value, use the equal sign but leave off
the value. These assignments are done during a very early stage of start-up, so variables
reserved for internal purposes might get overwritten later.

-V | --version

Print the psql version and exit.

-x | --expanded

Turn on the expanded table formatting mode.

-X | --no-psqlrc

Client Tools Reference Client Tools for UNIX

16

Do not read the start-up file (neither the system-wide psqlrc file nor the user's ~/.psqlrc
file).

-1 | --single-transaction

When psql executes a script with the -f option, adding this option wraps BEGIN/COMMIT
around the script to execute it as a single transaction. This ensures that either all the
commands complete successfully, or no changes are applied.

If the script itself uses BEGIN, COMMIT, or ROLLBACK, this option will not have the desired
effects. Also, if the script contains any command that cannot be executed inside a transaction
block, specifying this option will cause that command (and hence the whole transaction) to
fail.

-? | --help

Show help about psql command line arguments, and exit.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is running. If
not specified, reads from the environment variable PGHOST or defaults to localhost.

-p port | --port port

The TCP port on which the Greenplum master database server is listening for connections. If
not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment variable
PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt. psql should automatically prompt for a password whenever the
server requests password authentication. However, currently password request detection is
not totally reliable, hence this option to force a prompt. If no password prompt is issued and
the server requires password authentication, the connection attempt will fail.

-w --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt will
fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

Note: This option remains set for the entire session, and so it affects uses of the meta-
command \connect as well as the initial connection attempt.

Exit Status
psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of memory, file not found)
occurs, 2 if the connection to the server went bad and the session was not interactive, and 3 if an error
occurred in a script and the variable ON_ERROR_STOP was set.

Usage
Connecting to a Database

psql is a client application for Greenplum Database. In order to connect to a database you need to know
the name of your target database, the host name and port number of the Greenplum master server and
what database user name you want to connect as. psql can be told about those parameters via command
line options, namely -d, -h, -p, and -U respectively. If an argument is found that does not belong to any
option it will be interpreted as the database name (or the user name, if the database name is already
given). Not all these options are required; there are useful defaults. If you omit the host name, psql will
connect via a UNIX-domain socket to a master server on the local host, or via TCP/IP to localhost on

Client Tools Reference Client Tools for UNIX

17

machines that do not have UNIX-domain sockets. The default master port number is 5432. If you use a
different port for the master, you must specify the port. The default database user name is your UNIX user
name, as is the default database name. Note that you cannot just connect to any database under any user
name. Your database administrator should have informed you about your access rights.

When the defaults are not right, you can save yourself some typing by setting any or all of the environment
variables PGAPPNAME, PGDATABASE, PGHOST, PGPORT, and PGUSER to appropriate values.

It is also convenient to have a ~/.pgpass file to avoid regularly having to type in passwords. This file
should reside in your home directory and contain lines of the following format:

hostname:port:database:username:password

The permissions on .pgpass must disallow any access to world or group (for example: chmod 0600
~/.pgpass). If the permissions are less strict than this, the file will be ignored. (The file permissions are not
currently checked on Microsoft Windows clients, however.)

If the connection could not be made for any reason (insufficient privileges, server is not running, etc.), psql
will return an error and terminate.

Entering SQL Commands

In normal operation, psql provides a prompt with the name of the database to which psql is currently
connected, followed by the string => for a regular user or =# for a superuser. For example:

testdb=>
testdb=#

At the prompt, the user may type in SQL commands. Ordinarily, input lines are sent to the server when
a command-terminating semicolon is reached. An end of line does not terminate a command. Thus
commands can be spread over several lines for clarity. If the command was sent and executed without
error, the results of the command are displayed on the screen.

Meta-Commands
Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is
processed by psql itself. These commands help make psql more useful for administration or scripting.
Meta-commands are more commonly called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

To include whitespace into an argument you may quote it with a single quote. To include a single quote
into such an argument, use two single quotes. Anything contained in single quotes is furthermore subject to
C-like substitutions for \n (new line), \t (tab), \digits (octal), and \xdigits (hexadecimal).

If an unquoted argument begins with a colon (:), it is taken as a psql variable and the value of the variable
is used as the argument instead.

Arguments that are enclosed in backquotes (`) are taken as a command line that is passed to the shell.
The output of the command (with any trailing newline removed) is taken as the argument value. The above
escape sequences also apply in backquotes.

Some commands take an SQL identifier (such as a table name) as argument. These arguments follow
the syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (") protect letters
from case conversion and allow incorporation of whitespace into the identifier. Within double quotes,
paired double quotes reduce to a single double quote in the resulting name. For example, FOO"BAR"BAZ is
interpreted as fooBARbaz, and "A weird"" name" becomes A weird" name.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as the beginning
of a new meta-command. The special sequence \\ (two backslashes) marks the end of arguments and

Client Tools Reference Client Tools for UNIX

18

continues parsing SQL commands, if any. That way SQL and psql commands can be freely mixed on a
line. But in any case, the arguments of a meta-command cannot continue beyond the end of the line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, it is switched to aligned. If it is not unaligned, it
is set to unaligned. This command is kept for backwards compatibility. See \pset for a more
general solution.

\cd [directory]

Changes the current working directory. Without argument, changes to the current user's
home directory. To print your current working directory, use \!pwd.

\C [title]

Sets the title of any tables being printed as the result of a query or unset any such title. This
command is equivalent to \pset title.

\c | \connect [dbname [username] [host] [port]]

Establishes a new connection. If the new connection is successfully made, the previous
connection is closed. If any of dbname, username, host or port are omitted, the value of that
parameter from the previous connection is used. If the connection attempt failed, the previous
connection will only be kept if psql is in interactive mode. When executing a non-interactive
script, processing will immediately stop with an error. This distinction was chosen as a user
convenience against typos, and a safety mechanism that scripts are not accidentally acting
on the wrong database.

\conninfo

Displays information about the current connection including the database name, the user
name, the type of connection (UNIX domain socket, TCP/IP, etc.), the host, and the port.

\copy {table [(column_list)] | (query)} {from | to} {filename | stdin | stdout | pstdin | pstdout}
[with] [binary] [oids] [delimiter [as] 'character'] [null [as] 'string'] [csv [header] [quote [as]
'character'] [escape [as] 'character'] [force quote column_list] [force not null column_list]]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY command, but
instead of the server reading or writing the specified file, psql reads or writes the file and
routes the data between the server and the local file system. This means that file accessibility
and privileges are those of the local user, not the server, and no SQL superuser privileges
are required.

The syntax of the command is similar to that of the SQL COPY command. Note that, because
of this, special parsing rules apply to the \copy command. In particular, the variable
substitution rules and backslash escapes do not apply.

\copy ... from stdin | to stdout reads/writes based on the command input and output
respectively. All rows are read from the same source that issued the command, continuing
until \. is read or the stream reaches EOF. Output is sent to the same place as command
output. To read/write from psql's standard input or output, use pstdin or pstdout. This
option is useful for populating tables in-line within a SQL script file.

This operation is not as efficient as the SQL COPY command because all data must pass
through the client/server connection.

\copyright

Shows the copyright and distribution terms of PostgreSQL on which Greenplum Database is
based.

\d [relation_pattern] | \d+ [relation_pattern] | \dS [relation_pattern]

For each relation (table, external table, view, index, or sequence) matching the relation
pattern, show all columns, their types, the tablespace (if not the default) and any special

Client Tools Reference Client Tools for UNIX

19

attributes such as NOT NULL or defaults, if any. Associated indexes, constraints, rules, and
triggers are also shown, as is the view definition if the relation is a view.

• The command form \d+ is identical, except that more information is displayed: any
comments associated with the columns of the table are shown, as is the presence of OIDs
in the table.

For partitioned tables, the command \d or \d+ specified with the root partition table or
child partition table displays information about the table including partition keys on the
current level of the partition table. The command \d+ also displays the immediate child
partitions of the table and whether the child partition is an external table or regular table.

For append-optimized tables and column-oriented tables, \d+ displays the storage options
for a table. For append-optimized tables, the options are displayed for the table. For
column-oriented tables, storage options are displayed for each column.

• The command form \dS is identical, except that system information is displayed as well
as user information.For example, \dt displays user tables, but not system tables; \dtS
displays both user and system tables.Both these commands can take the + parameter to
display additional information, as in \dt+ and \dtS+.

If \d is used without a pattern argument, it is equivalent to \dtvs which will show a list of
all tables, views, and sequences.

\da [aggregate_pattern]

Lists all available aggregate functions, together with the data types they operate on. If a
pattern is specified, only aggregates whose names match the pattern are shown.

\db [tablespace_pattern] | \db+ [tablespace_pattern]

Lists all available tablespaces and their corresponding filespace locations. If pattern is
specified, only tablespaces whose names match the pattern are shown. If + is appended to
the command name, each object is listed with its associated permissions.

\dc [conversion_pattern]

Lists all available conversions between character-set encodings. If pattern is specified, only
conversions whose names match the pattern are listed.

\dC

Lists all available type casts.

\dd [object_pattern]

Lists all available objects. If pattern is specified, only matching objects are shown.

\dD [domain_pattern]

Lists all available domains. If pattern is specified, only matching domains are shown.

\df [function_pattern] | \df+ [function_pattern]

Lists available functions, together with their argument and return types. If pattern is specified,
only functions whose names match the pattern are shown. If the form \df+ is used, additional
information about each function, including language and description, is shown. To reduce
clutter, \df does not show data type I/O functions. This is implemented by ignoring functions
that accept or return type cstring.

\dg [role_pattern]

Lists all database roles. If pattern is specified, only those roles whose names match the
pattern are listed.

\distPvxS [index | sequence | table | parent table | view | external_table | system_object]

This is not the actual command name: the letters i, s, t, P, v, x, S stand for index, sequence,
table, parent table, view, external table, and system table, respectively. You can specify any
or all of these letters, in any order, to obtain a listing of all the matching objects. The letter S
restricts the listing to system objects; without S, only non-system objects are shown. If + is

Client Tools Reference Client Tools for UNIX

20

appended to the command name, each object is listed with its associated description, if any.
If a pattern is specified, only objects whose names match the pattern are listed.

\dl

This is an alias for \lo_list, which shows a list of large objects.

\dn [schema_pattern] | \dn+ [schema_pattern]

Lists all available schemas (namespaces). If pattern is specified, only schemas whose names
match the pattern are listed. Non-local temporary schemas are suppressed. If + is appended
to the command name, each object is listed with its associated permissions and description, if
any.

\do [operator_pattern]

Lists available operators with their operand and return types. If pattern is specified, only
operators whose names match the pattern are listed.

\dp [relation_pattern_to_show_privileges]

Produces a list of all available tables, views and sequences with their associated access
privileges. If pattern is specified, only tables, views and sequences whose names match the
pattern are listed. The GRANT and REVOKE commands are used to set access privileges.

\dT [datatype_pattern] | \dT+ [datatype_pattern]

Lists all data types or only those that match pattern. The command form \dT+ shows extra
information.

\du [role_pattern]

Lists all database roles, or only those that match pattern.

\e | \edit [filename]

If a file name is specified, the file is edited; after the editor exits, its content is copied back to
the query buffer. If no argument is given, the current query buffer is copied to a temporary file
which is then edited in the same fashion. The new query buffer is then re-parsed according to
the normal rules of psql, where the whole buffer is treated as a single line. (Thus you cannot
make scripts this way. Use \i for that.) This means also that if the query ends with (or rather
contains) a semicolon, it is immediately executed. In other cases it will merely wait in the
query buffer.

psql searches the environment variables PSQL_EDITOR, EDITOR, and VISUAL (in that order)
for an editor to use. If all of them are unset, vi is used on UNIX systems, notepad.exe on
Windows systems.

\echotext [...]

Prints the arguments to the standard output, separated by one space and followed by a
newline. This can be useful to intersperse information in the output of scripts.

If you use the \o command to redirect your query output you may wish to use 'echo instead
of this command.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows the
current encoding.

\f [field_separator_string]

Sets the field separator for unaligned query output. The default is the vertical bar (|). See
also \pset for a generic way of setting output options.

\g [{filename | |command }]

Sends the current query input buffer to the server and optionally stores the query's output in
a file or pipes the output into a separate UNIX shell executing command. A bare \g is virtually
equivalent to a semicolon. A \g with argument is a one-shot alternative to the \o command.

Client Tools Reference Client Tools for UNIX

21

\h | \help [sql_command]

Gives syntax help on the specified SQL command. If a command is not specified, then psql
will list all the commands for which syntax help is available. Use an asterisk (*) to show
syntax help on all SQL commands. To simplify typing, commands that consists of several
words do not have to be quoted.

\H

Turns on HTML query output format. If the HTML format is already on, it is switched back to
the default aligned text format. This command is for compatibility and convenience, but see
\pset about setting other output options.

\i input_filename

Reads input from a file and executes it as though it had been typed on the keyboard. If you
want to see the lines on the screen as they are read you must set the variable ECHO to all.

\l | \list | \l+ | \list+

List the names, owners, and character set encodings of all the databases in the server. If + is
appended to the command name, database descriptions are also displayed.

\lo_export loid filename

Reads the large object with OID loid from the database and writes it to filename. Note that
this is subtly different from the server function lo_export, which acts with the permissions of
the user that the database server runs as and on the server's file system. Use \lo_list to
find out the large object's OID.

\lo_import large_object_filename [comment]

Stores the file into a large object. Optionally, it associates the given comment with the object.
Example:

mydb=> \lo_import '/home/gpadmin/pictures/photo.xcf' 'a
picture of me'
lo_import 152801

The response indicates that the large object received object ID 152801 which one ought to
remember if one wants to access the object ever again. For that reason it is recommended
to always associate a human-readable comment with every object. Those can then be seen
with the \lo_list command. Note that this command is subtly different from the server-side
lo_import because it acts as the local user on the local file system, rather than the server's
user and file system.

\lo_list

Shows a list of all large objects currently stored in the database, along with any comments
provided for them.

\lo_unlink largeobject_oid

Deletes the large object of the specified OID from the database. Use \lo_list to find out the
large object's OID.

\o [{query_result_filename | |command}]

Saves future query results to a file or pipes them into a UNIX shell command. If no arguments
are specified, the query output will be reset to the standard output. Query results include
all tables, command responses, and notices obtained from the database server, as well as
output of various backslash commands that query the database (such as \d), but not error
messages. To intersperse text output in between query results, use 'echo.

\p

Print the current query buffer to the standard output.

\password [username]

Client Tools Reference Client Tools for UNIX

22

Changes the password of the specified user (by default, the current user). This command
prompts for the new password, encrypts it, and sends it to the server as an ALTER ROLE
command. This makes sure that the new password does not appear in cleartext in the
command history, the server log, or elsewhere.

\prompt [text] name

Prompts the user to set a variable name. Optionally, you can specify a prompt. Enclose
prompts longer than one word in single quotes.

By default, \prompt uses the terminal for input and output. However, use the -f command line
switch to specify standard input and standard output.

\pset print_option [value]

This command sets options affecting the output of query result tables. print_option describes
which option is to be set. Adjustable printing options are:

• format – Sets the output format to one of unaligned, aligned, html, latex, troff-ms, or
wrapped. First letter abbreviations are allowed. Unaligned writes all columns of a row on
a line, separated by the currently active field separator. This is intended to create output
that might be intended to be read in by other programs. Aligned mode is the standard,
human-readable, nicely formatted text output that is default. The HTML and LaTeX modes
put out tables that are intended to be included in documents using the respective mark-up
language. They are not complete documents! (This might not be so dramatic in HTML, but
in LaTeX you must have a complete document wrapper.)

The wrapped option sets the output format like the aligned parameter , but wraps
wide data values across lines to make the output fit in the target column width. The
target width is set with the columns option. To specify the column width and select the
wrapped format, use two \pset commands; for example, to set the with to 72 columns and
specify wrapped format, use the commands \pset columns 72 and then \pset format
wrapped.

Note: Since psql does not attempt to wrap column header titles, the
wrapped format behaves the same as aligned if the total width needed for
column headers exceeds the target.

• border – The second argument must be a number. In general, the higher the number the
more borders and lines the tables will have, but this depends on the particular format. In
HTML mode, this will translate directly into the border=... attribute, in the others only
values 0 (no border), 1 (internal dividing lines), and 2 (table frame) make sense.

• columns – Sets the target width for the wrapped format, and also the width limit for
determining whether output is wide enough to require the pager. The default is zero.
Zero causes the target width to be controlled by the environment variable COLUMNS, or
the detected screen width if COLUMNS is not set. In addition, if columns is zero then the
wrapped format affects screen output only. If columns is nonzero then file and pipe output
is wrapped to that width as well.

After setting the target width, use the command \pset format wrapped to enable the
wrapped format.

• expanded | x) – Toggles between regular and expanded format. When expanded format
is enabled, query results are displayed in two columns, with the column name on the left
and the data on the right. This mode is useful if the data would not fit on the screen in the
normal horizontal mode. Expanded mode is supported by all four output formats.

• linestyle [unicode | ascii | old-ascii] – Sets the border line drawing style to one
of unicode, ascii, or old-ascii. Unique abbreviations, including one letter, are allowed for
the three styles. The default setting is ascii. This option only affects the aligned and
wrapped output formats.

ascii – uses plain ASCII characters. Newlines in data are shown using a + symbol in the
right-hand margin. When the wrapped format wraps data from one line to the next without

Client Tools Reference Client Tools for UNIX

23

a newline character, a dot (.) is shown in the right-hand margin of the first line, and again
in the left-hand margin of the following line.

old-ascii – style uses plain ASCII characters, using the formatting style used in
PostgreSQL 8.4 and earlier. Newlines in data are shown using a : symbol in place of the
left-hand column separator. When the data is wrapped from one line to the next without a
newline character, a ; symbol is used in place of the left-hand column separator.

unicode – style uses Unicode box-drawing characters. Newlines in data are shown using
a carriage return symbol in the right-hand margin. When the data is wrapped from one
line to the next without a newline character, an ellipsis symbol is shown in the right-hand
margin of the first line, and again in the left-hand margin of the following line.

When the border setting is greater than zero, this option also determines the characters
with which the border lines are drawn. Plain ASCII characters work everywhere, but
Unicode characters look nicer on displays that recognize them.

• null 'string' – The second argument is a string to print whenever a column is null.
The default is not to print anything, which can easily be mistaken for an empty string. For
example, the command \psetnull '(empty)' displays (empty) in null columns.

• fieldsep – Specifies the field separator to be used in unaligned output mode. That way
one can create, for example, tab- or comma-separated output, which other programs
might prefer. To set a tab as field separator, type \pset fieldsep '\t'. The default field
separator is '|' (a vertical bar).

• footer – Toggles the display of the default footer (x rows).

• numericlocale – Toggles the display of a locale-aware character to separate groups of
digits to the left of the decimal marker. It also enables a locale-aware decimal marker.

• recordsep – Specifies the record (line) separator to use in unaligned output mode. The
default is a newline character.

• title [text] – Sets the table title for any subsequently printed tables. This can be used to
give your output descriptive tags. If no argument is given, the title is unset.

• tableattr | T [text] – Allows you to specify any attributes to be placed inside the HTML
table tag. This could for example be cellpadding or bgcolor. Note that you probably
don't want to specify border here, as that is already taken care of by \pset border.

• tuples_only | t [novalue | on | off] – The \pset tuples_only command by itselt
toggles between tuples only and full display. The values on and off set the tuples display,
regardless of the current setting. Full display may show extra information such as column
headers, titles, and various footers. In tuples only mode, only actual table data is shown
The \t command is equivalent to \psettuples_only and is provided for convenience.

• pager – Controls the use of a pager for query and psql help output. When on, if the
environment variable PAGER is set, the output is piped to the specified program. Otherwise
a platform-dependent default (such as more) is used. When off, the pager is not used.
When on, the pager is used only when appropriate. Pager can also be set to always,
which causes the pager to be always used.

\q

Quits the psql program.

\qechotext [...]

This command is identical to \echo except that the output will be written to the query output
channel, as set by \o.

\r

Resets (clears) the query buffer.

\s [history_filename]

Print or save the command line history to filename. If filename is omitted, the history is written
to the standard output.

Client Tools Reference Client Tools for UNIX

24

\set [name [value [...]]]

Sets the internal variable name to value or, if more than one value is given, to the
concatenation of all of them. If no second argument is given, the variable is just set with no
value. To unset a variable, use the \unset command.

Valid variable names can contain characters, digits, and underscores. See "Variables" in
Advanced Features. Variable names are case-sensitive.

Although you are welcome to set any variable to anything you want, psql treats several
variables as special. They are documented in the topic about variables.

This command is totally separate from the SQL command SET.

\t [novalue | on | off]

The \t command by itself toggles a display of output column name headings and row count
footer. The values on and off set the tuples display, regardless of the current setting.This
command is equivalent to \pset tuples_only and is provided for convenience.

\T table_options

Allows you to specify attributes to be placed within the table tag in HTML tabular output
mode.

\timing [novalue | on | off]

The \timing command by itself toggles a display of how long each SQL statement takes, in
milliseconds. The values on and off set the time display, regardless of the current setting.

\w {filename | |command}

Outputs the current query buffer to a file or pipes it to a UNIX command.

\x

Toggles expanded table formatting mode.

\z [relation_to_show_privileges]

Produces a list of all available tables, views and sequences with their associated access
privileges. If a pattern is specified, only tables, views and sequences whose names match the
pattern are listed. This is an alias for \dp.

\! [command]

Escapes to a separate UNIX shell or executes the UNIX command. The arguments are not
further interpreted, the shell will see them as is.

\?

Shows help information about the psql backslash commands.

Patterns
The various \d commands accept a pattern parameter to specify the object name(s) to be displayed.
In the simplest case, a pattern is just the exact name of the object. The characters within a pattern are
normally folded to lower case, just as in SQL names; for example, \dt FOO will display the table named
foo. As in SQL names, placing double quotes around a pattern stops folding to lower case. Should you
need to include an actual double quote character in a pattern, write it as a pair of double quotes within a
double-quote sequence; again this is in accord with the rules for SQL quoted identifiers. For example, \dt
"FOO""BAR" will display the table named FOO"BAR (not foo"bar). Unlike the normal rules for SQL names,
you can put double quotes around just part of a pattern, for instance \dt FOO"FOO"BAR will display the
table named fooFOObar.

Within a pattern, * matches any sequence of characters (including no characters) and ? matches any
single character. (This notation is comparable to UNIX shell file name patterns.) For example, \dt int*
displays all tables whose names begin with int. But within double quotes, * and ? lose these special
meanings and are just matched literally.

Client Tools Reference Client Tools for UNIX

25

A pattern that contains a dot (.) is interpreted as a schema name pattern followed by an object name
pattern. For example, \dt foo*.bar* displays all tables whose table name starts with bar that are in
schemas whose schema name starts with foo. When no dot appears, then the pattern matches only
objects that are visible in the current schema search path. Again, a dot within double quotes loses its
special meaning and is matched literally.

Advanced users can use regular-expression notations. All regular expression special characters work
as specified in the PostgreSQL documentation on regular expressions, except for . which is taken as a
separator as mentioned above, * which is translated to the regular-expression notation .*, and ? which
is translated to .. You can emulate these pattern characters at need by writing ? for .,(R+|) for R*, or
(R|) for R?. Remember that the pattern must match the whole name, unlike the usual interpretation of
regular expressions; write * at the beginning and/or end if you don't wish the pattern to be anchored. Note
that within double quotes, all regular expression special characters lose their special meanings and are
matched literally. Also, the regular expression special characters are matched literally in operator name
patterns (such as the argument of \do).

Whenever the pattern parameter is omitted completely, the \d commands display all objects that are
visible in the current schema search path – this is equivalent to using the pattern *. To see all objects in
the database, use the pattern *.*.

Advanced Features
Variables

psql provides variable substitution features similar to common UNIX command shells. Variables are simply
name/value pairs, where the value can be any string of any length. To set variables, use the psql meta-
command \set:

testdb=> \set foo bar

sets the variable foo to the value bar. To retrieve the content of the variable, precede the name with a
colon and use it as the argument of any slash command:

testdb=> \echo :foo
bar

Note: The arguments of \set are subject to the same substitution rules as with other commands.
Thus you can construct interesting references such as \set :foo 'something' and get 'soft
links' or 'variable variables' of Perl or PHP fame, respectively. Unfortunately, there is no way to do
anything useful with these constructs. On the other hand, \set bar :foo is a perfectly valid way to
copy a variable.

If you call \set without a second argument, the variable is set, with an empty string as value. To unset (or
delete) a variable, use the command \unset.

psql's internal variable names can consist of letters, numbers, and underscores in any order and any
number of them. A number of these variables are treated specially by psql. They indicate certain option
settings that can be changed at run time by altering the value of the variable or represent some state of
the application. Although you can use these variables for any other purpose, this is not recommended, as
the program behavior might behave unexpectedly. By convention, all specially treated variables consist of
all upper-case letters (and possibly numbers and underscores). To ensure maximum compatibility in the
future, avoid using such variable names for your own purposes. A list of all specially treated variables are
as follows:

AUTOCOMMIT

When on (the default), each SQL command is automatically committed upon successful
completion. To postpone commit in this mode, you must enter a BEGIN or START
TRANSACTION SQL command. When off or unset, SQL commands are not committed until you
explicitly issue COMMIT or END. The autocommit-on mode works by issuing an implicit BEGIN
for you, just before any command that is not already in a transaction block and is not itself a

http://www.postgresql.org/docs/8.2/static/functions-matching.html#FUNCTIONS-POSIX-REGEXP

Client Tools Reference Client Tools for UNIX

26

BEGIN or other transaction-control command, nor a command that cannot be executed inside
a transaction block (such as VACUUM).

In autocommit-off mode, you must explicitly abandon any failed transaction by entering ABORT
or ROLLBACK. Also keep in mind that if you exit the session without committing, your work will
be lost.

The autocommit-on mode is PostgreSQL's traditional behavior, but autocommit-off is closer
to the SQL spec. If you prefer autocommit-off, you may wish to set it in your ~/.psqlrc file.

DBNAME

The name of the database you are currently connected to. This is set every time you connect
to a database (including program start-up), but can be unset.

ECHO

If set to all, all lines entered from the keyboard or from a script are written to the standard
output before they are parsed or executed. To select this behavior on program start-up, use
the switch -a. If set to queries, psql merely prints all queries as they are sent to the server.
The switch for this is -e.

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query is
first shown. This way you can study the Greenplum Database internals and provide similar
functionality in your own programs. (To select this behavior on program start-up, use the
switch -E.) If you set the variable to the value noexec, the queries are just shown but are not
actually sent to the server and executed.

ENCODING

The current client character set encoding.

FETCH_COUNT

If this variable is set to an integer value > 0, the results of SELECT queries are fetched and
displayed in groups of that many rows, rather than the default behavior of collecting the entire
result set before display. Therefore only a limited amount of memory is used, regardless of
the size of the result set. Settings of 100 to 1000 are commonly used when enabling this
feature. Keep in mind that when using this feature, a query may fail after having already
displayed some rows.

Although you can use any output format with this feature, the default aligned format tends to
look bad because each group of FETCH_COUNT rows will be formatted separately, leading to
varying column widths across the row groups. The other output formats work better.

HISTCONTROL

If this variable is set to ignorespace, lines which begin with a space are not entered into
the history list. If set to a value of ignoredups, lines matching the previous history line are
not entered. A value of ignoreboth combines the two options. If unset, or if set to any other
value than those above, all lines read in interactive mode are saved on the history list.

HISTFILE

The file name that will be used to store the history list. The default value is
~/.psql_history. For example, putting

\set HISTFILE ~/.psql_history- :DBNAME

in ~/.psqlrc will cause psql to maintain a separate history for each database.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

HOST

Client Tools Reference Client Tools for UNIX

27

The database server host you are currently connected to. This is set every time you connect
to a database (including program start-up), but can be unset.

IGNOREEOF

If unset, sending an EOF character (usually CTRL+D) to an interactive session of psql will
terminate the application. If set to a numeric value, that many EOF characters are ignored
before the application terminates. If the variable is set but has no numeric value, the default is
10.

LASTOID

The value of the last affected OID, as returned from an INSERT or lo_insert command. This
variable is only guaranteed to be valid until after the result of the next SQL command has
been displayed.

ON_ERROR_ROLLBACK

When on, if a statement in a transaction block generates an error, the error is ignored and the
transaction continues. When interactive, such errors are only ignored in interactive sessions,
and not when reading script files. When off (the default), a statement in a transaction block
that generates an error aborts the entire transaction. The on_error_rollback-on mode works
by issuing an implicit SAVEPOINT for you, just before each command that is in a transaction
block, and rolls back to the savepoint on error.

ON_ERROR_STOP

By default, if non-interactive scripts encounter an error, such as a malformed SQL command
or internal meta-command, processing continues. This has been the traditional behavior
of psql but it is sometimes not desirable. If this variable is set, script processing will
immediately terminate. If the script was called from another script it will terminate in the same
fashion. If the outermost script was not called from an interactive psql session but rather
using the -f option, psql will return error code 3, to distinguish this case from fatal error
conditions (error code 1).

PORT

The database server port to which you are currently connected. This is set every time you
connect to a database (including program start-up), but can be unset.

PROMPT1
PROMPT2
PROMPT3

These specify what the prompts psql issues should look like. See "Prompting".

QUIET

This variable is equivalent to the command line option -q. It is not very useful in interactive
mode.

SINGLELINE

This variable is equivalent to the command line option -S.

SINGLESTEP

This variable is equivalent to the command line option -s.

USER

The database user you are currently connected as. This is set every time you connect to a
database (including program start-up), but can be unset.

VERBOSITY

This variable can be set to the values default, verbose, or terse to control the verbosity of
error reports.

SQL Interpolation

Client Tools Reference Client Tools for UNIX

28

An additional useful feature of psql variables is that you can substitute (interpolate) them into regular SQL
statements. The syntax for this is again to prepend the variable name with a colon (:).

testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :foo;

would then query the table my_table. The value of the variable is copied literally, so it can even contain
unbalanced quotes or backslash commands. You must make sure that it makes sense where you put it.
Variable interpolation will not be performed into quoted SQL entities.

A popular application of this facility is to refer to the last inserted OID in subsequent statements to build a
foreign key scenario. Another possible use of this mechanism is to copy the contents of a file into a table
column. First load the file into a variable and then proceed as above.

testdb=> \set content '''' `cat my_file.txt` ''''
testdb=> INSERT INTO my_table VALUES (:content);

One problem with this approach is that my_file.txt might contain single quotes. These need to be
escaped so that they don't cause a syntax error when the second line is processed. This could be done
with the program sed:

testdb=> \set content '''' `sed -e "s/'/''/g" < my_file.txt`
''''

If you are using non-standard-conforming strings then you'll also need to double backslashes. This is a bit
tricky:

testdb=> \set content '''' `sed -e "s/'/''/g" -e
's/\\/\\\\/g' < my_file.txt` ''''

Note the use of different shell quoting conventions so that neither the single quote marks nor the
backslashes are special to the shell. Backslashes are still special to sed, however, so we need to double
them.

Since colons may legally appear in SQL commands, the following rule applies: the character sequence
":name" is not changed unless "name" is the name of a variable that is currently set. In any case you can
escape a colon with a backslash to protect it from substitution. (The colon syntax for variables is standard
SQL for embedded query languages, such as ECPG. The colon syntax for array slices and type casts are
Greenplum Database extensions, hence the conflict.)

Prompting

The prompts psql issues can be customized to your preference. The three variables PROMPT1, PROMPT2,
and PROMPT3 contain strings and special escape sequences that describe the appearance of the prompt.
Prompt 1 is the normal prompt that is issued when psql requests a new command. Prompt 2 is issued
when more input is expected during command input because the command was not terminated with a
semicolon or a quote was not closed. Prompt 3 is issued when you run an SQL COPY command and you
are expected to type in the row values on the terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is
encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:

%M

The full host name (with domain name) of the database server, or [local] if the connection
is over a UNIX domain socket, or [local:/dir/name], if the UNIX domain socket is not at
the compiled in default location.

%m

The host name of the database server, truncated at the first dot, or [local] if the connection
is over a UNIX domain socket.

Client Tools Reference Client Tools for UNIX

29

%>

The port number at which the database server is listening.

%n

The database session user name. (The expansion of this value might change during a
database session as the result of the command SET SESSION AUTHORIZATION.)

%/

The name of the current database.

%~

Like %/, but the output is ~ (tilde) if the database is your default database.

%#

If the session user is a database superuser, then a #, otherwise a >. (The expansion of this
value might change during a database session as the result of the command SET SESSION
AUTHORIZATION.)

%R

In prompt 1 normally =, but ^ if in single-line mode, and ! if the session is disconnected from
the database (which can happen if \connect fails). In prompt 2 the sequence is replaced
by -, *, a single quote, a double quote, or a dollar sign, depending on whether psql expects
more input because the command wasn't terminated yet, because you are inside a /* ...
*/ comment, or because you are inside a quoted or dollar-escaped string. In prompt 3 the
sequence doesn't produce anything.

%x

Transaction status: an empty string when not in a transaction block, or * when in a
transaction block, or ! when in a failed transaction block, or ? when the transaction state is
indeterminate (for example, because there is no connection).

%digits

The character with the indicated octal code is substituted.

%:name:

The value of the psql variable name. See "Variables" in Advanced Features for details.

%`command`

The output of command, similar to ordinary back-tick substitution.

%[... %]

Prompts may contain terminal control characters which, for example, change the color,
background, or style of the prompt text, or change the title of the terminal window. In order
for line editing to work properly, these non-printing control characters must be designated
as invisible by surrounding them with %[and %]. Multiple pairs of these may occur within the
prompt. For example,

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%#'

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible, color-
capable terminals. To insert a percent sign into your prompt, write %%. The default prompts
are '%/%R%# ' for prompts 1 and 2, and '>> ' for prompt 3.

Command-Line Editing

psql supports the NetBSD libedit library for convenient line editing and retrieval. The command history
is automatically saved when psql exits and is reloaded when psql starts up. Tab-completion is also
supported, although the completion logic makes no claim to be an SQL parser. If for some reason you

Client Tools Reference Client Tools for UNIX

30

do not like the tab completion, you can turn it off by putting this in a file named .inputrc in your home
directory:

$if psql
set disable-completion on
$endif

Environment
PAGER

If the query results do not fit on the screen, they are piped through this command. Typical
values are more or less. The default is platform-dependent. The use of the pager can be
disabled by using the \pset command.

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters.

PSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e command. The variables are examined in the order listed; the first that
is set is used.

SHELL

Command executed by the \! command.

TMPDIR

Directory for storing temporary files. The default is /tmp.

Files
Before starting up, psql attempts to read and execute commands from the user's ~/.psqlrc file.

The command-line history is stored in the file ~/.psql_history.

Notes
psql only works smoothly with servers of the same version. That does not mean other combinations will
fail outright, but subtle and not-so-subtle problems might come up. Backslash commands are particularly
likely to fail if the server is of a different version.

Notes for Windows users
psql is built as a console application. Since the Windows console windows use a different encoding than
the rest of the system, you must take special care when using 8-bit characters within psql. If psql detects
a problematic console code page, it will warn you at startup. To change the console code page, two things
are necessary:

Set the code page by entering:

cmd.exe /c chcp 1252

1252 is a character encoding of the Latin alphabet, used by Microsoft Windows for English and some other
Western languages. If you are using Cygwin, you can put this command in /etc/profile.

Set the console font to Lucida Console, because the raster font does not work with the ANSI code page.

Client Tools Reference Client Tools for UNIX

31

Examples
Start psql in interactive mode:

psql -p 54321 -U sally mydatabase

In psql interactive mode, spread a command over several lines of input. Notice the changing prompt:

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text)
testdb-> ;
CREATE TABLE

Look at the table definition:

testdb=> \d my_table
 Table "my_table"
 Attribute | Type | Modifier
-----------+---------+--------------------
 first | integer | not null default 0
 second | text |

Run psql in non-interactive mode by passing in a file containing SQL commands:

psql -f /home/gpadmin/test/myscript.sql

SQL Syntax Summary Client Tools for UNIX

32

Chapter 3

SQL Syntax Summary

ABORT
Aborts the current transaction.

ABORT [WORK | TRANSACTION]

ALTER AGGREGATE
Changes the definition of an aggregate function

ALTER AGGREGATE name (type [, ...]) RENAME TO new_name

ALTER AGGREGATE name (type [, ...]) OWNER TO new_owner

ALTER AGGREGATE name (type [, ...]) SET SCHEMA new_schema

ALTER CONVERSION
Changes the definition of a conversion.

ALTER CONVERSION name RENAME TO newname

ALTER CONVERSION name OWNER TO newowner

ALTER DATABASE
Changes the attributes of a database.

ALTER DATABASE name [WITH CONNECTION LIMIT connlimit]

ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT }

ALTER DATABASE name RESET parameter

ALTER DATABASE name RENAME TO newname

ALTER DATABASE name OWNER TO new_owner

ALTER DOMAIN
Changes the definition of a domain.

ALTER DOMAIN name { SET DEFAULT expression | DROP DEFAULT }

ALTER DOMAIN name { SET | DROP } NOT NULL

ALTER DOMAIN name ADD domain_constraint

ALTER DOMAIN name DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]

ALTER DOMAIN name OWNER TO new_owner

ALTER DOMAIN name SET SCHEMA new_schema

SQL Syntax Summary Client Tools for UNIX

33

ALTER EXTERNAL TABLE
Changes the definition of an external table.

ALTER EXTERNAL TABLE name RENAME [COLUMN] column TO new_column

ALTER EXTERNAL TABLE name RENAME TO new_name

ALTER EXTERNAL TABLE name SET SCHEMA new_schema

ALTER EXTERNAL TABLE name action [, ...]

ALTER FILESPACE
Changes the definition of a filespace.

ALTER FILESPACE name RENAME TO newname

ALTER FILESPACE name OWNER TO newowner

ALTER FUNCTION
Changes the definition of a function.

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 action [, ...] [RESTRICT]

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 RENAME TO new_name

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 OWNER TO new_owner

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 SET SCHEMA new_schema

ALTER GROUP
Changes a role name or membership.

ALTER GROUP groupname ADD USER username [, ...]

ALTER GROUP groupname DROP USER username [, ...]

ALTER GROUP groupname RENAME TO newname

ALTER INDEX
Changes the definition of an index.

ALTER INDEX name RENAME TO new_name

ALTER INDEX name SET TABLESPACE tablespace_name

ALTER INDEX name SET (FILLFACTOR = value)

ALTER INDEX name RESET (FILLFACTOR)

SQL Syntax Summary Client Tools for UNIX

34

ALTER LANGUAGE
Changes the name of a procedural language.

ALTER LANGUAGE name RENAME TO newname

ALTER OPERATOR
Changes the definition of an operator.

ALTER OPERATOR name ({lefttype | NONE} , {righttype | NONE})
 OWNER TO newowner

ALTER OPERATOR CLASS
Changes the definition of an operator class.

ALTER OPERATOR CLASS name USING index_method RENAME TO newname

ALTER OPERATOR CLASS name USING index_method OWNER TO newowner

ALTER PROTOCOL
Changes the definition of a protocol.

ALTER PROTOCOL name RENAME TO newname

ALTER PROTOCOL name OWNER TO newowner

ALTER RESOURCE QUEUE
Changes the limits of a resource queue.

ALTER RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

ALTER ROLE
Changes a database role (user or group).

ALTER ROLE name RENAME TO newname

ALTER ROLE name SET config_parameter {TO | =} {value | DEFAULT}

ALTER ROLE name RESET config_parameter

ALTER ROLE name RESOURCE QUEUE {queue_name | NONE}

ALTER ROLE name [[WITH] option [...]]

ALTER SCHEMA
Changes the definition of a schema.

ALTER SCHEMA name RENAME TO newname

ALTER SCHEMA name OWNER TO newowner

SQL Syntax Summary Client Tools for UNIX

35

ALTER SEQUENCE
Changes the definition of a sequence generator.

ALTER SEQUENCE name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [RESTART [WITH] start]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY {table.column | NONE}]

ALTER SEQUENCE name SET SCHEMA new_schema

ALTER TABLE
Changes the definition of a table.

ALTER TABLE [ONLY] name RENAME [COLUMN] column TO new_column

ALTER TABLE name RENAME TO new_name

ALTER TABLE name SET SCHEMA new_schema

ALTER TABLE [ONLY] name SET
 DISTRIBUTED BY (column, [...])
 | DISTRIBUTED RANDOMLY
 | WITH (REORGANIZE=true|false)

ALTER TABLE [ONLY] name action [, ...]

ALTER TABLE name
 [ALTER PARTITION { partition_name | FOR (RANK(number))
 | FOR (value) } partition_action [...]]
 partition_action

ALTER TABLESPACE
Changes the definition of a tablespace.

ALTER TABLESPACE name RENAME TO newname

ALTER TABLESPACE name OWNER TO newowner

ALTER TYPE
Changes the definition of a data type.

ALTER TYPE name
 OWNER TO new_owner | SET SCHEMA new_schema

ALTER USER
Changes the definition of a database role (user).

ALTER USER name RENAME TO newname

ALTER USER name SET config_parameter {TO | =} {value | DEFAULT}

ALTER USER name RESET config_parameter

ALTER USER name [[WITH] option [...]]

SQL Syntax Summary Client Tools for UNIX

36

ANALYZE
Collects statistics about a database.

ANALYZE [VERBOSE] [ROOTPARTITION [ALL]]
 [table [(column [, ...])]]

BEGIN
Starts a transaction block.

BEGIN [WORK | TRANSACTION] [transaction_mode]
 [READ ONLY | READ WRITE]

CHECKPOINT
Forces a transaction log checkpoint.

CHECKPOINT

CLOSE
Closes a cursor.

CLOSE cursor_name

CLUSTER
Physically reorders a heap storage table on disk according to an index. Not a recommended operation in
Greenplum Database.

CLUSTER indexname ON tablename

CLUSTER tablename

CLUSTER

COMMENT
Defines or change the comment of an object.

COMMENT ON
{ TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE agg_name (agg_type [, ...]) |
 CAST (sourcetype AS targettype) |
 CONSTRAINT constraint_name ON table_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 FILESPACE object_name |
 FUNCTION func_name ([[argmode] [argname] argtype [, ...]]) |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 OPERATOR op (leftoperand_type, rightoperand_type) |
 OPERATOR CLASS object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 RESOURCE QUEUE object_name |
 ROLE object_name |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |

SQL Syntax Summary Client Tools for UNIX

37

 TABLESPACE object_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name }
IS 'text'

COMMIT
Commits the current transaction.

COMMIT [WORK | TRANSACTION]

COPY
Copies data between a file and a table.

COPY table [(column [, ...])] FROM {'file' | STDIN}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE NOT NULL column [, ...]]
 [FILL MISSING FIELDS]
 [[LOG ERRORS [INTO error_table] [KEEP]
 SEGMENT REJECT LIMIT count [ROWS | PERCENT]]

COPY {table [(column [, ...])] | (query)} TO {'file' | STDOUT}
 [[WITH]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE QUOTE column [, ...]]]
 [IGNORE EXTERNAL PARTITIONS]

CREATE AGGREGATE
Defines a new aggregate function.

CREATE [ORDERED] AGGREGATE name (input_data_type [, ...])
 (SFUNC = sfunc,
 STYPE = state_data_type
 [, PREFUNC = prefunc]
 [, FINALFUNC = ffunc]
 [, INITCOND = initial_condition]
 [, SORTOP = sort_operator])

CREATE CAST
Defines a new cast.

CREATE CAST (sourcetype AS targettype)
 WITH FUNCTION funcname (argtypes)
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (sourcetype AS targettype) WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

SQL Syntax Summary Client Tools for UNIX

38

CREATE CONVERSION
Defines a new encoding conversion.

CREATE [DEFAULT] CONVERSION name FOR source_encoding TO
 dest_encoding FROM funcname

CREATE DATABASE
Creates a new database.

CREATE DATABASE name [[WITH] [OWNER [=] dbowner]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [TABLESPACE [=] tablespace]
 [CONNECTION LIMIT [=] connlimit]]

CREATE DOMAIN
Defines a new domain.

CREATE DOMAIN name [AS] data_type [DEFAULT expression]
 [CONSTRAINT constraint_name
 | NOT NULL | NULL
 | CHECK (expression) [...]]

CREATE EXTERNAL TABLE
Defines a new external table.

CREATE [READABLE] EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('file://seghost[:port]/path/file' [, ...])
 | ('gpfdist://filehost[:port]/file_pattern[#transform]' [, ...]
 | ('gpfdists://filehost[:port]/file_pattern[#transform]'
 [, ...])
 | ('gphdfs://hdfs_host[:port]/path/file')
 | ('s3://S3_endpoint[:port]/bucket_name/[S3_prefix]
 [region=S3-region] [config=config_file]')
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'AVRO'
 | 'PARQUET'

 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS [INTO error_table]] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE [READABLE] EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)

SQL Syntax Summary Client Tools for UNIX

39

 LOCATION ('http://webhost[:port]/path/file' [, ...])
 | EXECUTE 'command' [ON ALL
 | MASTER
 | number_of_segments
 | HOST ['segment_hostname']
 | SEGMENT segment_id]
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS [INTO error_table]] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE WRITABLE EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION('gpfdist://outputhost[:port]/filename[#transform]'
 | ('gpfdists://outputhost[:port]/file_pattern[#transform]'
 [, ...])
 | ('gphdfs://hdfs_host[:port]/path')
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 | 'AVRO'
 | 'PARQUET'

 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE WRITABLE EXTERNAL TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION('s3://S3_endpoint[:port]/bucket_name/[S3_prefix]
 [region=S3-region] [config=config_file]')
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]

CREATE WRITABLE EXTERNAL WEB TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 EXECUTE 'command' [ON ALL]
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']

SQL Syntax Summary Client Tools for UNIX

40

 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]]]
 [ESCAPE [AS] 'escape'])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE FUNCTION
Defines a new function.

CREATE [OR REPLACE] FUNCTION name
 ([[argmode] [argname] argtype [, ...]])
 [RETURNS { [SETOF] rettype
 | TABLE ([{ argname argtype | LIKE other table }
 [, ...]])
 }]
 { LANGUAGE langname
 | IMMUTABLE | STABLE | VOLATILE
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | AS 'definition'
 | AS 'obj_file', 'link_symbol' } ...
 [WITH ({ DESCRIBE = describe_function
 } [, ...])]

CREATE GROUP
Defines a new database role.

CREATE GROUP name [[WITH] option [...]]

CREATE INDEX
Defines a new index.

CREATE [UNIQUE] INDEX name ON table
 [USING btree|bitmap|gist]
 ({column | (expression)} [opclass] [, ...])
 [WITH (FILLFACTOR = value)]
 [TABLESPACE tablespace]
 [WHERE predicate]

CREATE LANGUAGE
Defines a new procedural language.

CREATE [PROCEDURAL] LANGUAGE name

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [VALIDATOR valfunction]

CREATE OPERATOR
Defines a new operator.

CREATE OPERATOR name (
 PROCEDURE = funcname
 [, LEFTARG = lefttype] [, RIGHTARG = righttype]

SQL Syntax Summary Client Tools for UNIX

41

 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
 [, SORT1 = left_sort_op] [, SORT2 = right_sort_op]
 [, LTCMP = less_than_op] [, GTCMP = greater_than_op])

CREATE OPERATOR CLASS
Defines a new operator class.

CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method AS
 {
 OPERATOR strategy_number op_name [(op_type, op_type)] [RECHECK]
 | FUNCTION support_number funcname (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

CREATE PROTOCOL
Registers a custom data access protocol that can be specified when defining a Greenplum Database
external table.

CREATE [TRUSTED] PROTOCOL name (
 [readfunc='read_call_handler'] [, writefunc='write_call_handler']
 [, validatorfunc='validate_handler'])

CREATE RESOURCE QUEUE
Defines a new resource queue.

CREATE RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

CREATE ROLE
Defines a new database role (user or group).

CREATE ROLE name [[WITH] option [...]]

CREATE RULE
Defines a new rewrite rule.

CREATE [OR REPLACE] RULE name AS ON event
 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command; command
 ...) }

CREATE SCHEMA
Defines a new schema.

CREATE SCHEMA schema_name [AUTHORIZATION username]
 [schema_element [...]]

CREATE SCHEMA AUTHORIZATION rolename [schema_element [...]]

SQL Syntax Summary Client Tools for UNIX

42

CREATE SEQUENCE
Defines a new sequence generator.

CREATE [TEMPORARY | TEMP] SEQUENCE name
 [INCREMENT [BY] value]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [CACHE cache]
 [[NO] CYCLE]
 [OWNED BY { table.column | NONE }]

CREATE TABLE
Defines a new table.

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name (
[{ column_name data_type [DEFAULT default_expr]
 [column_constraint [...]
[ENCODING (storage_directive [,...])]
]
 | table_constraint
 | LIKE other_table [{INCLUDING | EXCLUDING}
 {DEFAULTS | CONSTRAINTS}] ...}
 [, ...]]
)
 [INHERITS (parent_table [, ...])]
 [WITH (storage_parameter=value [, ...])
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]
 [PARTITION BY partition_type (column)
 [SUBPARTITION BY partition_type (column)]
 [SUBPARTITION TEMPLATE (template_spec)]
 [...]
 (partition_spec)
 | [SUBPARTITION BY partition_type (column)]
 [...]
 (partition_spec
 [(subpartition_spec
 [(...)]
)]
)

CREATE TABLE AS
Defines a new table from the results of a query.

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP}] TABLE table_name
 [(column_name [, ...])]
 [WITH (storage_parameter=value [, ...])]
 [ON COMMIT {PRESERVE ROWS | DELETE ROWS | DROP}]
 [TABLESPACE tablespace]
 AS query
 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

CREATE TABLESPACE
Defines a new tablespace.

CREATE TABLESPACE tablespace_name [OWNER username]
 FILESPACE filespace_name

SQL Syntax Summary Client Tools for UNIX

43

CREATE TYPE
Defines a new data type.

CREATE TYPE name AS (attribute_name data_type [, ...])

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, INTERNALLENGTH = {internallength | VARIABLE}]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter])

CREATE TYPE name

CREATE USER
Defines a new database role with the LOGIN privilege by default.

CREATE USER name [[WITH] option [...]]

CREATE VIEW
Defines a new view.

CREATE [OR REPLACE] [TEMP | TEMPORARY] VIEW name
 [(column_name [, ...])]
 AS query

DEALLOCATE
Deallocates a prepared statement.

DEALLOCATE [PREPARE] name

DECLARE
Defines a cursor.

DECLARE name [BINARY] [INSENSITIVE] [NO SCROLL] CURSOR
 [{WITH | WITHOUT} HOLD]
 FOR query [FOR READ ONLY]

DELETE
Deletes rows from a table.

DELETE FROM [ONLY] table [[AS] alias]
 [USING usinglist]
 [WHERE condition | WHERE CURRENT OF cursor_name]

SQL Syntax Summary Client Tools for UNIX

44

DROP AGGREGATE
Removes an aggregate function.

DROP AGGREGATE [IF EXISTS] name (type [, ...]) [CASCADE | RESTRICT]

DROP CAST
Removes a cast.

DROP CAST [IF EXISTS] (sourcetype AS targettype) [CASCADE | RESTRICT]

DROP CONVERSION
Removes a conversion.

DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

DROP DATABASE
Removes a database.

DROP DATABASE [IF EXISTS] name

DROP DOMAIN
Removes a domain.

DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP EXTERNAL TABLE
Removes an external table definition.

DROP EXTERNAL [WEB] TABLE [IF EXISTS] name [CASCADE | RESTRICT]

DROP FILESPACE
Removes a filespace.

DROP FILESPACE [IF EXISTS] filespacename

DROP FUNCTION
Removes a function.

DROP FUNCTION [IF EXISTS] name ([[argmode] [argname] argtype
 [, ...]]) [CASCADE | RESTRICT]

DROP GROUP
Removes a database role.

DROP GROUP [IF EXISTS] name [, ...]

SQL Syntax Summary Client Tools for UNIX

45

DROP INDEX
Removes an index.

DROP INDEX [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP LANGUAGE
Removes a procedural language.

DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

DROP OPERATOR
Removes an operator.

DROP OPERATOR [IF EXISTS] name ({lefttype | NONE} ,
 {righttype | NONE}) [CASCADE | RESTRICT]

DROP OPERATOR CLASS
Removes an operator class.

DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

DROP OWNED
Removes database objects owned by a database role.

DROP OWNED BY name [, ...] [CASCADE | RESTRICT]

DROP PROTOCOL
Removes a external table data access protocol from a database.

DROP PROTOCOL [IF EXISTS] name

DROP RESOURCE QUEUE
Removes a resource queue.

DROP RESOURCE QUEUE queue_name

DROP ROLE
Removes a database role.

DROP ROLE [IF EXISTS] name [, ...]

DROP RULE
Removes a rewrite rule.

DROP RULE [IF EXISTS] name ON relation [CASCADE | RESTRICT]

SQL Syntax Summary Client Tools for UNIX

46

DROP SCHEMA
Removes a schema.

DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP SEQUENCE
Removes a sequence.

DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP TABLE
Removes a table.

DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP TABLESPACE
Removes a tablespace.

DROP TABLESPACE [IF EXISTS] tablespacename

DROP TYPE
Removes a data type.

DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP USER
Removes a database role.

DROP USER [IF EXISTS] name [, ...]

DROP VIEW
Removes a view.

DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

END
Commits the current transaction.

END [WORK | TRANSACTION]

EXECUTE
Executes a prepared SQL statement.

EXECUTE name [(parameter [, ...])]

SQL Syntax Summary Client Tools for UNIX

47

EXPLAIN
Shows the query plan of a statement.

EXPLAIN [ANALYZE] [VERBOSE] statement

FETCH
Retrieves rows from a query using a cursor.

FETCH [forward_direction { FROM | IN }] cursorname

GRANT
Defines access privileges.

GRANT { {SELECT | INSERT | UPDATE | DELETE | REFERENCES |
TRIGGER | TRUNCATE } [,...] | ALL [PRIVILEGES] }
 ON [TABLE] tablename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {USAGE | SELECT | UPDATE} [,...] | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 TO { rolename | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | CONNECT | TEMPORARY | TEMP} [,...] | ALL
[PRIVILEGES] }
 ON DATABASE dbname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION funcname ([[argmode] [argname] argtype [, ...]
]) [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE langname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | USAGE} [,...] | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 TO {rolename | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT parent_role [, ...]
 TO member_role [, ...] [WITH ADMIN OPTION]

GRANT { SELECT | INSERT | ALL [PRIVILEGES] }
 ON PROTOCOL protocolname
 TO username

INSERT
Creates new rows in a table.

INSERT INTO table [(column [, ...])]
 {DEFAULT VALUES | VALUES ({expression | DEFAULT} [, ...])
 [, ...] | query}

SQL Syntax Summary Client Tools for UNIX

48

LOAD
Loads or reloads a shared library file.

LOAD 'filename'

LOCK
Locks a table.

LOCK [TABLE] name [, ...] [IN lockmode MODE] [NOWAIT]

MOVE
Positions a cursor.

MOVE [forward_direction {FROM | IN}] cursorname

PREPARE
Prepare a statement for execution.

PREPARE name [(datatype [, ...])] AS statement

REASSIGN OWNED
Changes the ownership of database objects owned by a database role.

REASSIGN OWNED BY old_role [, ...] TO new_role

REINDEX
Rebuilds indexes.

REINDEX {INDEX | TABLE | DATABASE | SYSTEM} name

RELEASE SAVEPOINT
Destroys a previously defined savepoint.

RELEASE [SAVEPOINT] savepoint_name

RESET
Restores the value of a system configuration parameter to the default value.

RESET configuration_parameter

RESET ALL

REVOKE
Removes access privileges.

REVOKE [GRANT OPTION FOR] { {SELECT | INSERT | UPDATE | DELETE
 | REFERENCES | TRIGGER | TRUNCATE } [,...] | ALL [PRIVILEGES] }
 ON [TABLE] tablename [, ...]

SQL Syntax Summary Client Tools for UNIX

49

 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {USAGE | SELECT | UPDATE} [,...]
 | ALL [PRIVILEGES] }
 ON SEQUENCE sequencename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | CONNECT
 | TEMPORARY | TEMP} [,...] | ALL [PRIVILEGES] }
 ON DATABASE dbname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {EXECUTE | ALL [PRIVILEGES]}
 ON FUNCTION funcname ([[argmode] [argname] argtype
 [, ...]]) [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {USAGE | ALL [PRIVILEGES]}
 ON LANGUAGE langname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | USAGE} [,...]
 | ALL [PRIVILEGES] }
 ON SCHEMA schemaname [, ...]
 FROM {rolename | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 FROM { rolename | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR] parent_role [, ...]
 FROM member_role [, ...]
 [CASCADE | RESTRICT]

ROLLBACK
Aborts the current transaction.

ROLLBACK [WORK | TRANSACTION]

ROLLBACK TO SAVEPOINT
Rolls back the current transaction to a savepoint.

ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

SAVEPOINT
Defines a new savepoint within the current transaction.

SAVEPOINT savepoint_name

SELECT
Retrieves rows from a table or view.

SELECT [ALL | DISTINCT [ON (expression [, ...])]]

SQL Syntax Summary Client Tools for UNIX

50

 * | expression [[AS] output_name] [, ...]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_specification)]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT] [...]]

SELECT INTO
Defines a new table from the results of a query.

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 INTO [TEMPORARY | TEMP] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{UNION | INTERSECT | EXCEPT} [ALL] select]
 [ORDER BY expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT]
 [...]]

SET
Changes the value of a Greenplum Database configuration parameter.

SET [SESSION | LOCAL] configuration_parameter {TO | =} value |
 'value' | DEFAULT}

SET [SESSION | LOCAL] TIME ZONE {timezone | LOCAL | DEFAULT}

SET ROLE
Sets the current role identifier of the current session.

SET [SESSION | LOCAL] ROLE rolename

SET [SESSION | LOCAL] ROLE NONE

RESET ROLE

SET SESSION AUTHORIZATION
Sets the session role identifier and the current role identifier of the current session.

SET [SESSION | LOCAL] SESSION AUTHORIZATION rolename

SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT

RESET SESSION AUTHORIZATION

SQL Syntax Summary Client Tools for UNIX

51

SET TRANSACTION
Sets the characteristics of the current transaction.

SET TRANSACTION [transaction_mode] [READ ONLY | READ WRITE]

SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode
 [READ ONLY | READ WRITE]

SHOW
Shows the value of a system configuration parameter.

SHOW configuration_parameter

SHOW ALL

START TRANSACTION
Starts a transaction block.

START TRANSACTION [SERIALIZABLE | READ COMMITTED | READ UNCOMMITTED]
 [READ WRITE | READ ONLY]

TRUNCATE
Empties a table of all rows.

TRUNCATE [TABLE] name [, ...] [CASCADE | RESTRICT]

UPDATE
Updates rows of a table.

UPDATE [ONLY] table [[AS] alias]
 SET {column = {expression | DEFAULT} |
 (column [, ...]) = ({expression | DEFAULT} [, ...])} [, ...]
 [FROM fromlist]
 [WHERE condition | WHERE CURRENT OF cursor_name]

VACUUM
Garbage-collects and optionally analyzes a database.

VACUUM [FULL] [FREEZE] [VERBOSE] [table]

VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE
 [table [(column [, ...])]]

VALUES
Computes a set of rows.

VALUES (expression [, ...]) [, ...]
 [ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT {count | ALL}] [OFFSET start]

	Copyright
	Contents
	Installing the Greenplum Client Tools
	Running the Client Tools Installer
	About Your Installation

	Configuring the Command-Line Tools
	Additional Connection Environment Variables

	Enabling Greenplum Database for Remote Client Connections
	Configuring a Client System for Kerberos Authentication
	Requirements
	Prerequisites
	Required Software on the Client Machine

	Setting Up a Client System with Kerberos Authentication
	Accessing Greenplum Database with psql

	Next Steps

	Client Tools Reference
	gpmapreduce
	psql

	SQL Syntax Summary

